

Cagin Coltekin
ccoltekin@cs.uni-tuebingen.de

University of Tübingen
Sensur für Sprachwissenschaft

Winter Semester 2025/26

version: (Initial) 002025-01

What is parsing?

- Parsing is the task of analyzing a string of symbols to discover its (inherent) structure
- Typically, the structure (and the valid strings in the language) is defined by a grammar
- The output of a parser is a structured representation of the input string, often a tree
- Recognition is an intimately related task which determines whether a given string is in a language

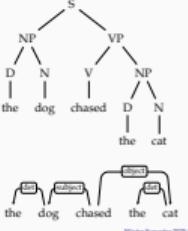
© Coltekin, 00 / University of Tübingen

Winter Semester 2025/26 1 / 20

Introduction Representation Ambiguity Top-down parsing Bottom-up parsing

Ingredients of a parser (for natural language parsing)

- A formal grammar defining a language of interest
- An algorithm that (efficiently) verifies whether a given string is in the language (recognizer) and enumerates the grammar rules used for verification (parser)
- A system for ambiguity resolution (not in this course)


© Coltekin, 00 / University of Tübingen

Winter Semester 2025/26 2 / 20

Introduction Representation Ambiguity Top-down parsing Bottom-up parsing

Why study parsing?

- In general, it is an intermediate step for interpreting sentences
- Applications include:
 - Compiler construction
 - Grammar checking
 - Semantic analysis
 - Information (e.g., relation) extraction
 - Argument mining
 - ...

Winter Semester 2025/26 4 / 20

Introduction Representation Ambiguity Top-down parsing Bottom-up parsing

Relation between different representations

- The parse tree and the bracket representation is equivalent
 - parse trees are easier to read by humans
 - brackets are easier for computers
 - brackets are the typical representation for treebanks
- A parse tree (or bracket representation) can be obtained with a different order of production rules

© Coltekin, 00 / University of Tübingen

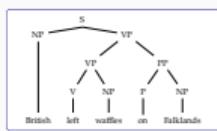
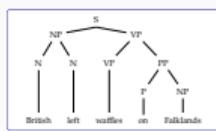
Winter Semester 2025/26 6 / 20


Introduction Representation Ambiguity Top-down parsing Bottom-up parsing

Grammars and ambiguity

Exp → n
Exp → Exp + Exp

(terminal symbol 'n' stands for any number)



- Is this ambiguity spurious?
- If different structures yield different semantics, the ambiguity is *essential*

Winter Semester 2025/26 8 / 20

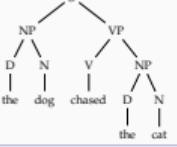
Introduction Representation Ambiguity Top-down parsing Bottom-up parsing

Natural languages are ambiguous

- The grammars we define have to distinguish between two different structures
- We need methods for ranking analyses

© Coltekin, 00 / University of Tübingen

Winter Semester 2025/26 10 / 20

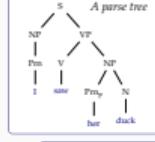

© Coltekin, 00 / University of Tübingen

Winter Semester 2025/26 1 / 20

Introduction Representation Ambiguity Top-down parsing Bottom-up parsing

Grammars

- A grammar is a finite specification of a possibly infinite language
- The most commonly studied type of grammars are *phrase structure grammars*
- Analysis using context-free grammars result in constituency or phrase structure trees


$S \rightarrow NP\ VP$ $NP \rightarrow D\ N$ $VP \rightarrow V\ NP$ $N \rightarrow dog$
 $V \rightarrow chased$ $D \rightarrow the$ $N \rightarrow cat$

© Coltekin, 00 / University of Tübingen

Winter Semester 2025/26 2 / 20

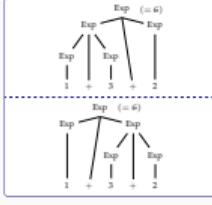
Introduction Representation Ambiguity Top-down parsing Bottom-up parsing

Different ways to represent a context-free parse

(Labelled) brackets: $\left[\left[NP \left[\left[I \right] \right] \right] \left[VP \left[\left[saw \right] \right] \right] \left[NP \left[\left[NP \left[\left[her \right] \right] \right] \left[NP \left[\left[duck \right] \right] \right] \right] \right]$

© Coltekin, 00 / University of Tübingen

Winter Semester 2025/26 3 / 20


Introduction Representation Ambiguity Top-down parsing Bottom-up parsing

Grammars and ambiguity

Exp → n
Exp → Exp + Exp

(terminal symbol 'n' stands for any number)

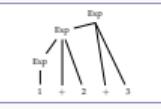
- If a grammar is ambiguous, some sentences produce multiple analyses
- If the resulting analysis lead to the same semantics, the ambiguity is *spurious*

© Coltekin, 00 / University of Tübingen

Winter Semester 2025/26 7 / 20

Introduction Representation Ambiguity Top-down parsing Bottom-up parsing

Ambiguity can be removed from a grammar if the language is not ambiguous


Exp → n
Exp → Exp + n

(terminal symbol 'n' stands for any number)

- The grammar above does not have the ambiguity of

Exp → n
Exp → Exp + Exp

- Both grammars define the same language

© Coltekin, 00 / University of Tübingen

Winter Semester 2025/26 8 / 20

Introduction Representation Ambiguity Top-down parsing Bottom-up parsing

Top-down parsing

general idea

- Start from S, find a sequence of derivations that yield the sentence
- This is simply the same as the generation procedure we discussed earlier
- Attempt to generate all strings from a grammar, but allow only the productions that 'produce' the input string

© Coltekin, 00 / University of Tübingen

Winter Semester 2025/26 10 / 20

Winter Semester 2025/26 11 / 20

