

Finite state automata

Data Structures and Algorithms for Computational Linguistics III
(ISCL-BA-07)

Çağrı Cöltekin

ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2025/26

Why study finite-state automata?

- Finite-state automata are efficient models of computation
- There are many applications
 - Electronic circuit design
 - Workflow management
 - Games
 - Pattern matching
 - ...

But more importantly ;-)

- Tokenization, stemming
- Morphological analysis
- Spell checking
- Shallow parsing/chunking
- ...

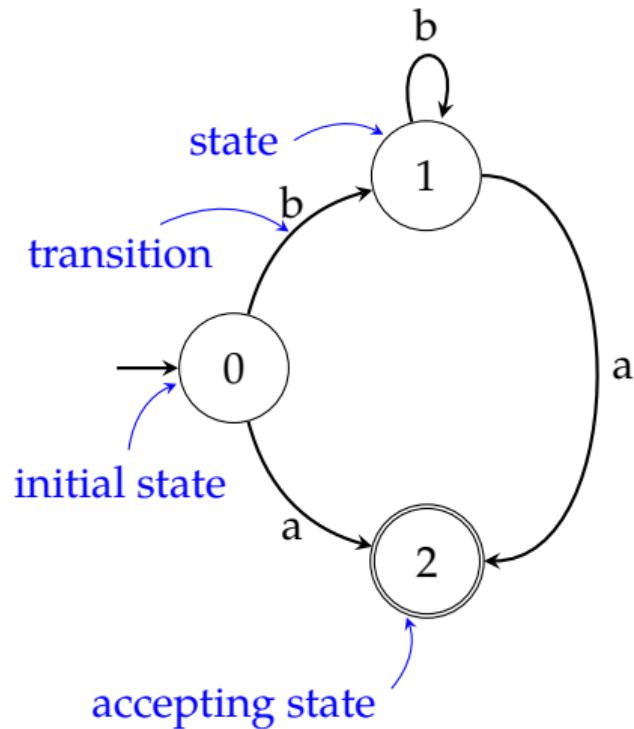
Finite-state automata (FSA)

- A finite-state machine is in one of a finite-number of states in a given time
- The machine changes its state based on its input
- Every regular language is generated/recognized by an FSA
- Every FSA generates/recognizes a regular language
- Two flavors:
 - *Deterministic finite automata* (DFA)
 - *Non-deterministic finite automata* (NFA)

Note: the NFA is a superset of DFA.

FSA as a graph

- An FSA is a directed graph
- States are represented as nodes
- Transitions are labeled edges
- One of the states is the *initial state*
- Some states are accepting states



Languages and automata

- Recognizing strings from a language defined by a grammar is a fundamental question in computer science
- The efficiency of computation, and required properties of computing device depends on the grammar (and the language)
- A well-known hierarchy of grammars both in computer science and linguistics is the *Chomsky hierarchy*
- Each grammar in the Chomsky hierarchy corresponds to an abstract computing device (an automaton)
- The class of *regular grammars* are the class that corresponds to *finite state automata*

How to describe a language?

Formal grammars

A formal *grammar* is a finite specification of a (formal) language.

- We consider languages as sets of strings, for a finite language, we can (conceivably) list all strings
- How to define an infinite language?
 - Is the definition $\{ba, baa, baaa, baaaa, \dots\}$ ‘formal enough’?

How to describe a language?

Formal grammars

A formal *grammar* is a finite specification of a (formal) language.

- We consider languages as sets of strings, for a finite language, we can (conceivably) list all strings
- How to define an infinite language?
 - Is the definition $\{ba, baa, baaa, baaaa, \dots\}$ 'formal enough'?
 - Using regular expressions, we can define it as baa^*

How to describe a language?

Formal grammars

A formal *grammar* is a finite specification of a (formal) language.

- We consider languages as sets of strings, for a finite language, we can (conceivably) list all strings
- How to define an infinite language?
 - Is the definition $\{ba, baa, baaa, baaaa, \dots\}$ 'formal enough'?
 - Using regular expressions, we can define it as baa^*
 - We will introduce a more general method for defining languages

Phrase structure grammars

- A phrase structure grammar is a generative device
- If a given string can be generated by the grammar, the string is in the language
- The grammar generates *all* and the *only* strings that are valid in the language
- A phrase structure grammar has the following components
 - Σ A set of *terminal* symbols
 - Ν A set of *non-terminal* symbols
- Σ ∈ Ν A special non-terminal, called the start symbol
- Ρ A set of *rewrite rules* or *production rules* of the form:

$$\alpha \rightarrow \beta$$

which means that the sequence α can be rewritten as β (both α and β are sequences of terminal and non-terminal symbols)

- The strings in the language of the grammar are those that can be derived from S using the rewrite operations

Chomsky hierarchy and automata

<i>Grammar class</i>	<i>Rules</i>	<i>Automata</i>
Unrestricted grammars	$\alpha \rightarrow \beta$	Turing machines
Context-sensitive grammars	$\alpha A \beta \rightarrow \alpha \gamma \beta$	Linear-bounded automata
Context-free grammars	$A \rightarrow \alpha$	Pushdown automata
Regular grammars	$\begin{array}{c c} A \rightarrow a & A \rightarrow a \\ \hline A \rightarrow aB & A \rightarrow B a \end{array}$	Finite state automata

Regular grammars: definition

A regular grammar is a tuple $G = (\Sigma, N, S, R)$ where

Σ is an alphabet of terminal symbols

N are a set of non-terminal symbols

S is a special 'start' symbol $\in N$

R is a set of rewrite rules following one of the following patterns ($A, B \in N$, $a \in \Sigma$, ϵ is the empty string)

Left regular	Right regular
1. $A \rightarrow a$	1. $A \rightarrow a$
2. $A \rightarrow Ba$	2. $A \rightarrow aB$
3. $A \rightarrow \epsilon$	3. $A \rightarrow \epsilon$

Regular languages: some properties/operations

$\mathcal{L}_1 \mathcal{L}_2$ Concatenation of two languages \mathcal{L}_1 and \mathcal{L}_2 : any sentence of \mathcal{L}_1 followed by any sentence of \mathcal{L}_2

\mathcal{L}^* Kleene star of \mathcal{L} : \mathcal{L} concatenated with itself 0 or more times

\mathcal{L}^R Reverse of \mathcal{L} : reverse of any string in \mathcal{L}

$\overline{\mathcal{L}}$ Complement of \mathcal{L} : all strings in $\Sigma_{\mathcal{L}}^*$ except the ones in \mathcal{L} ($\Sigma_{\mathcal{L}}^* - \mathcal{L}$)

$\mathcal{L}_1 \cup \mathcal{L}_2$ Union of languages \mathcal{L}_1 and \mathcal{L}_2 : strings that are in any of the languages

$\mathcal{L}_1 \cap \mathcal{L}_2$ Intersection of languages \mathcal{L}_1 and \mathcal{L}_2 : strings that are in both languages

Regular languages are closed under all of these operations.

Three ways to define a regular language

- A language is regular if there is regular grammar that generates/recognizes it
- A language is regular if there is an FSA that generates/recognizes it
- A language is regular if we can define a regular expressions for the language

DFA: formal definition

Formally, a deterministic finite state automaton, M , is a tuple $(\Sigma, Q, q_0, F, \Delta)$ with

Σ is the alphabet, a finite set of symbols

Q a finite set of states

q_0 is the start state, $q_0 \in Q$

F is the set of final states, $F \subseteq Q$

Δ is a function that takes a state and a symbol in the alphabet, and returns another state ($\Delta : Q \times \Sigma \rightarrow Q$)

At any state and for any input,
a DFA has a single well-defined action to take.

DFA: formal definition

an example

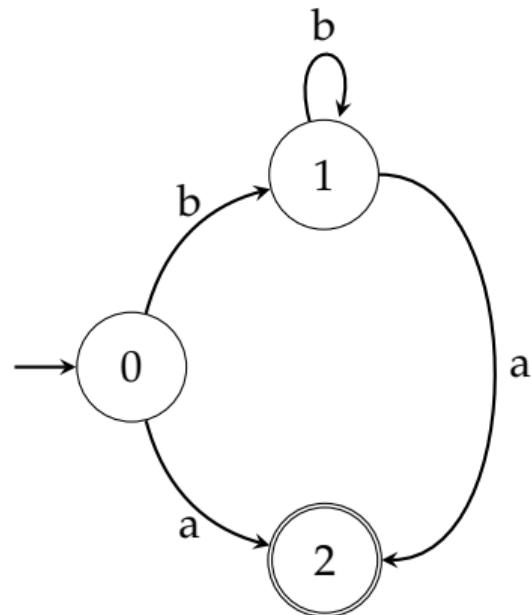
$$\Sigma = \{a, b\}$$

$$Q = \{q_0, q_1, q_2\}$$

$$q_0 = q_0$$

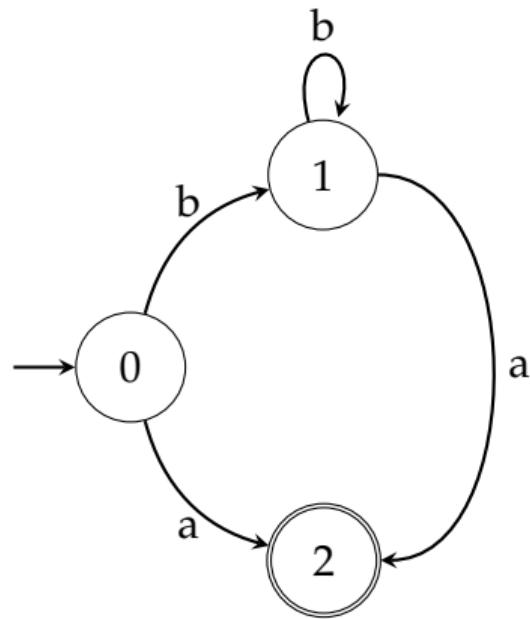
$$F = \{q_2\}$$

$$\Delta = \{(q_0, a) \rightarrow q_2, \quad (q_0, b) \rightarrow q_1, \\ (q_1, a) \rightarrow q_2, \quad (q_1, b) \rightarrow q_1\}$$



Another note on DFA

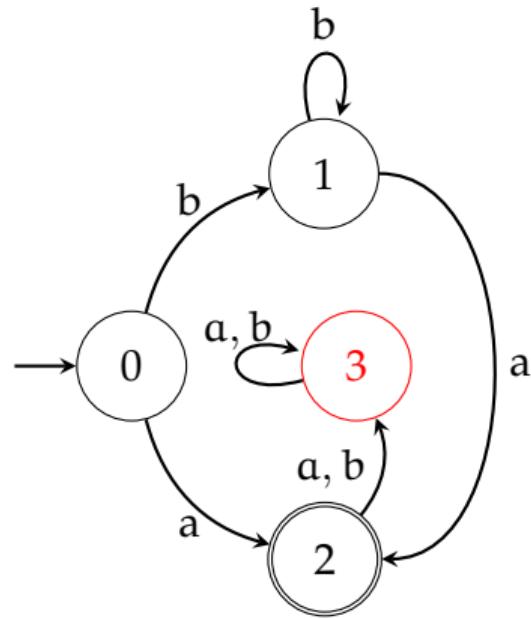
- Is this FSA deterministic?



Another note on DFA

error or sink state

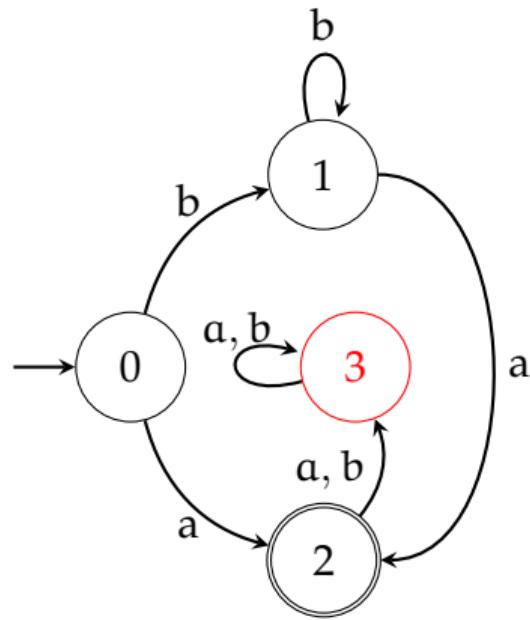
- Is this FSA deterministic?
- To make all transitions well-defined, we can add a sink (or error) state



Another note on DFA

error or sink state

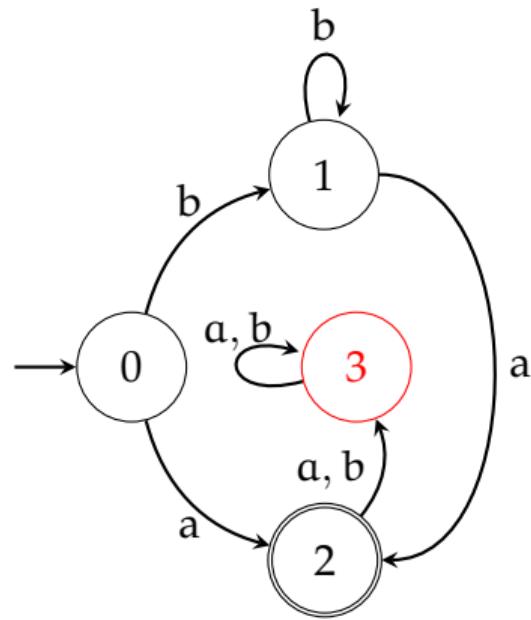
- Is this FSA deterministic?
- To make all transitions well-defined, we can add a sink (or error) state
- For brevity, we skip the explicit error state



Another note on DFA

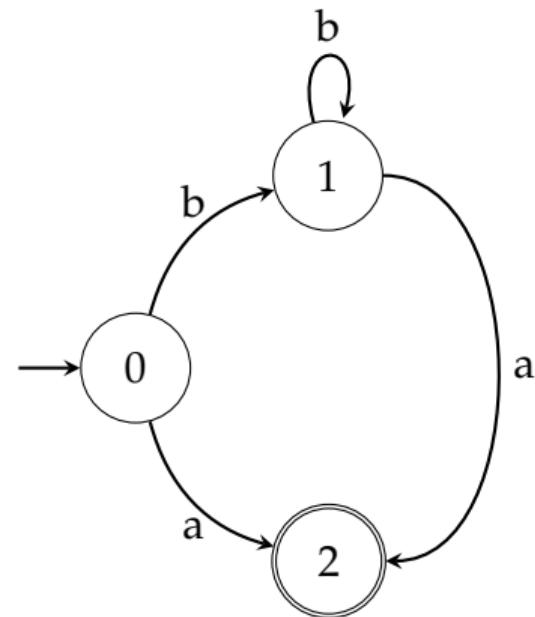
error or sink state

- Is this FSA deterministic?
- To make all transitions well-defined, we can add a sink (or error) state
- For brevity, we skip the explicit error state
 - In that case, when we reach a dead end, recognition fails



DFA: the transition table

		transition table	
		symbol	
		a	b
state	→0	2	1
	1	2	1
	*2	∅	∅

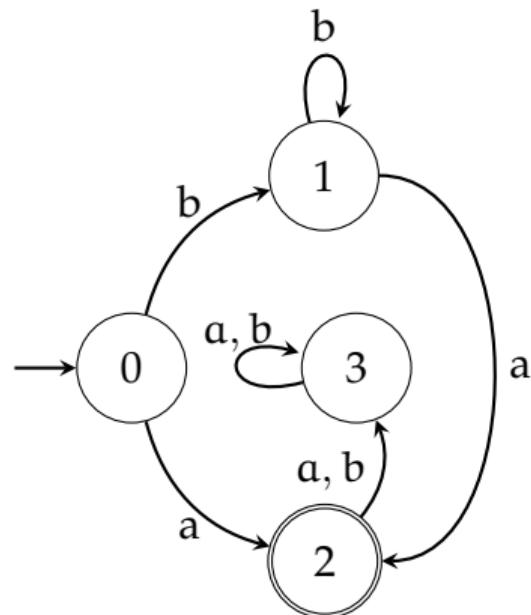


- marks the start state
- * marks the accepting state(s)

DFA: the transition table

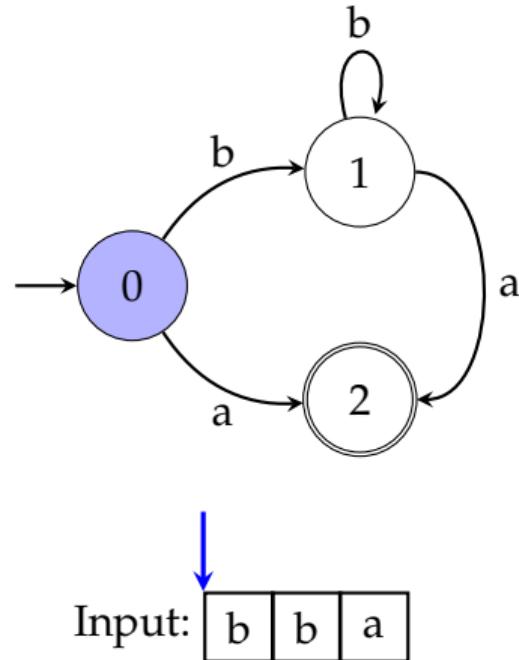
		transition table	
		symbol	
		a	b
state	→0	2	1
	1	2	1
	*2	3	3
	3	3	3

- marks the start state
- * marks the accepting state(s)



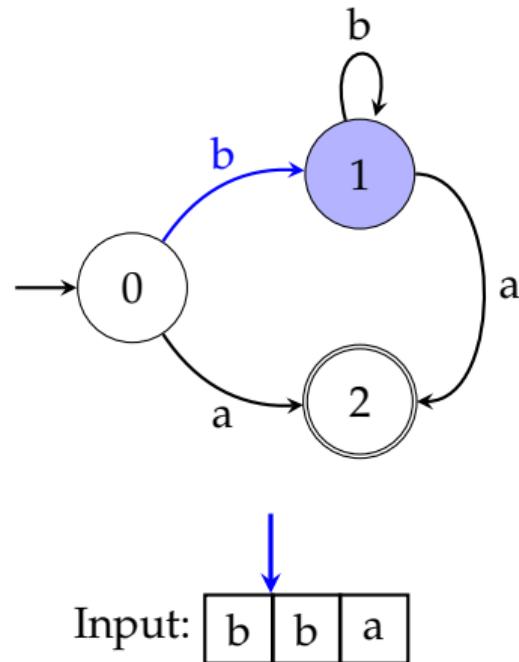
DFA recognition

1. Start at q_0
2. Process an input symbol, move accordingly
3. Accept if in a final state at the end of the input



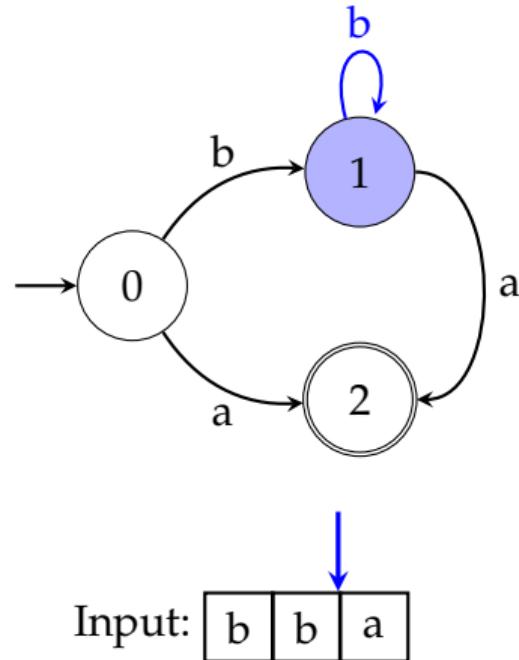
DFA recognition

1. Start at q_0
2. Process an input symbol, move accordingly
3. Accept if in a final state at the end of the input



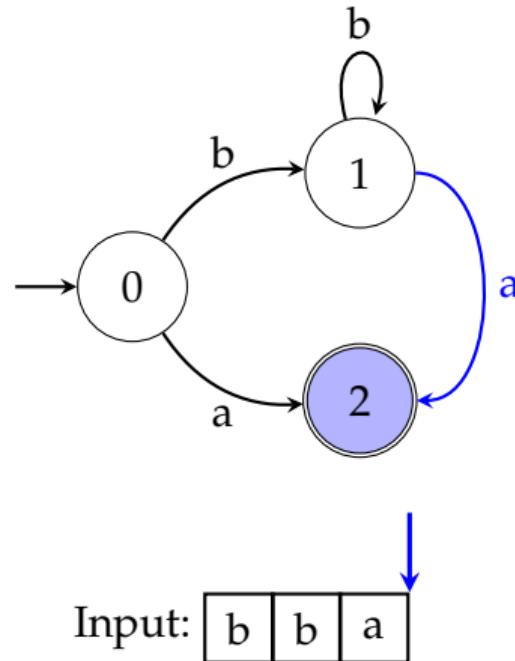
DFA recognition

1. Start at q_0
2. Process an input symbol, move accordingly
3. Accept if in a final state at the end of the input



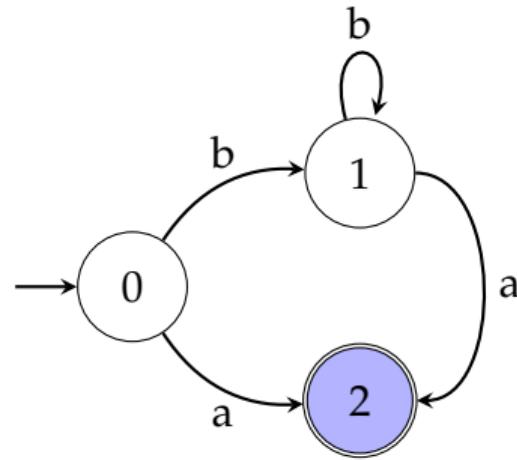
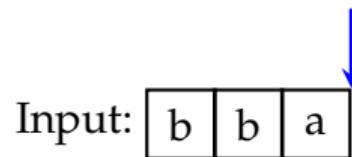
DFA recognition

1. Start at q_0
2. Process an input symbol, move accordingly
3. Accept if in a final state at the end of the input



DFA recognition

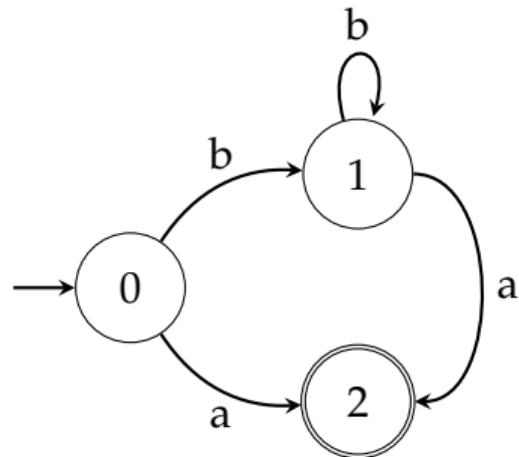
1. Start at q_0
2. Process an input symbol, move accordingly
3. Accept if in a final state at the end of the input



DFA recognition

1. Start at q_0
2. Process an input symbol, move accordingly
3. Accept if in a final state at the end of the input

- What is the complexity of the algorithm?
- How about inputs:
 - bbbb
 - aa

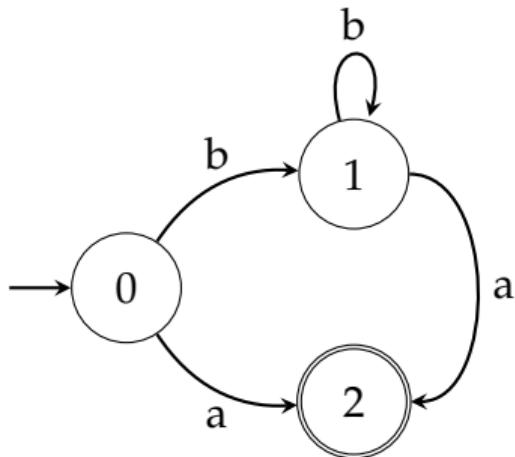


Input:

b	b	a
---	---	---

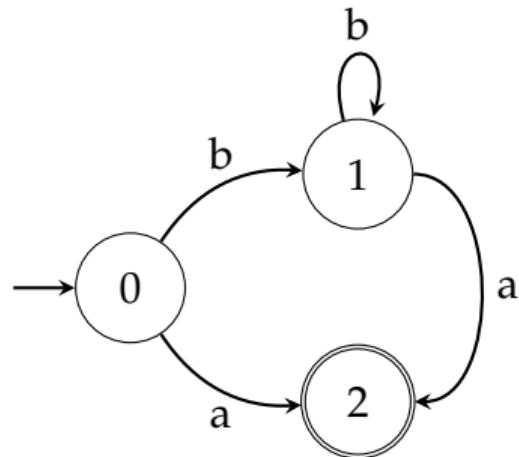
A few questions

- What is the language recognized by this FSA?



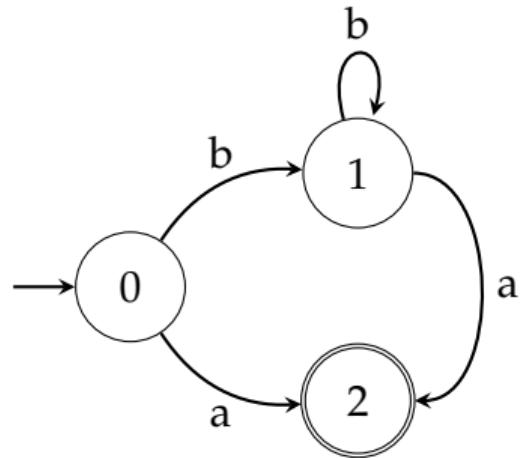
A few questions

- What is the language recognized by this FSA?
- Can you draw a simpler DFA for the same language?



A few questions

- What is the language recognized by this FSA?
- Can you draw a simpler DFA for the same language?
- Draw a DFA recognizing strings with even number of 'a's over $\Sigma = \{a, b\}$



Non-deterministic finite automata

Formal definition

A non-deterministic finite state automaton, M , is a tuple $(\Sigma, Q, q_0, F, \Delta)$ with

Σ is the alphabet, a finite set of symbols

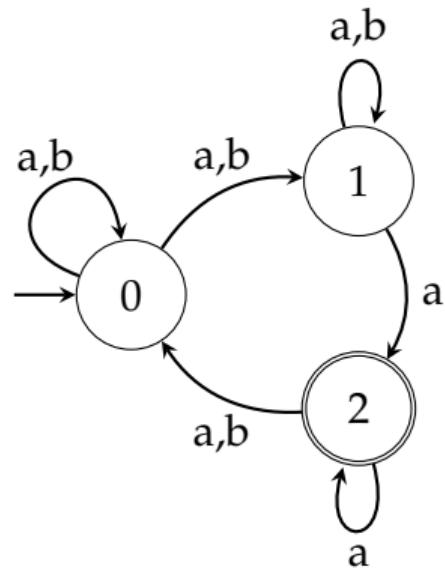
Q a finite set of states

q_0 is the start state, $q_0 \in Q$

F is the set of final states, $F \subseteq Q$

Δ is a function from (Q, Σ) to $P(Q)$, power set of Q ($\Delta : Q \times \Sigma \rightarrow P(Q)$)

An example NFA



transition table		
state	symbol	
	a	b
$\rightarrow 0$	0,1	0,1
1	1,2	1
*2	0,2	0

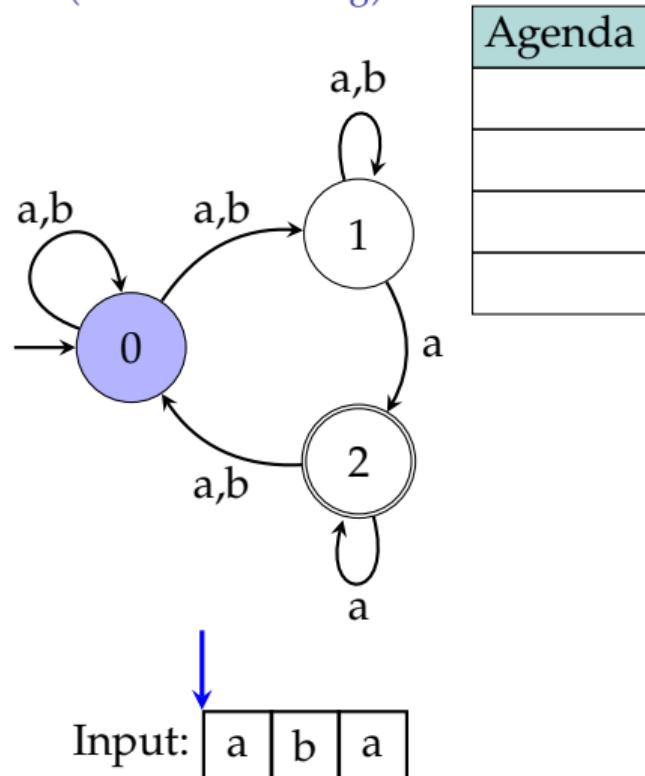
- We have nondeterminism, e.g., if the first input is a , we need to choose between states 0 or 1
- Transition table cells have *sets* of states

Dealing with non-determinism

- Follow one of the links, store alternatives, and *backtrack* on failure
- Follow all options in parallel

NFA recognition

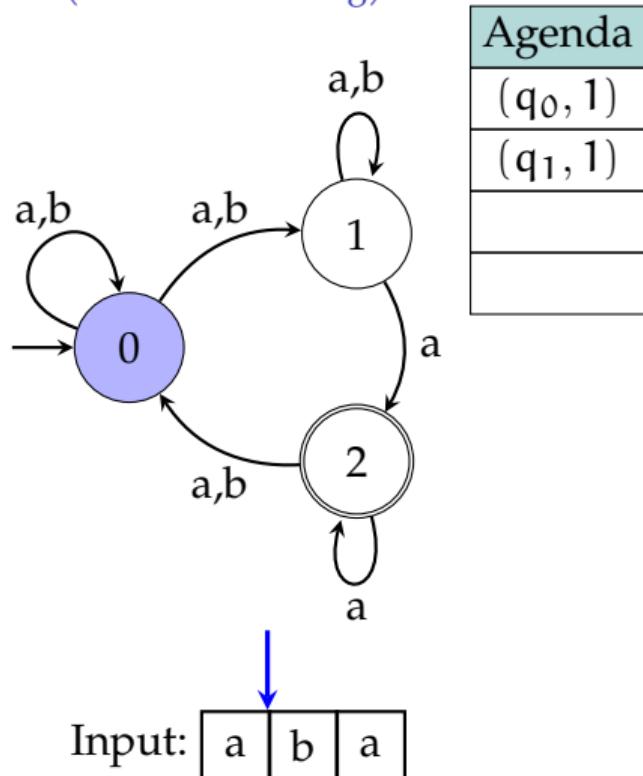
as search (with backtracking)



1. Start at q_0
2. Take the next input, place all possible actions to an *agenda*
3. Get the next action from the agenda, act
4. At the end of input
 - Accept if in an accepting state
 - Reject not in accepting state & agenda empty
 - Backtrack otherwise

NFA recognition

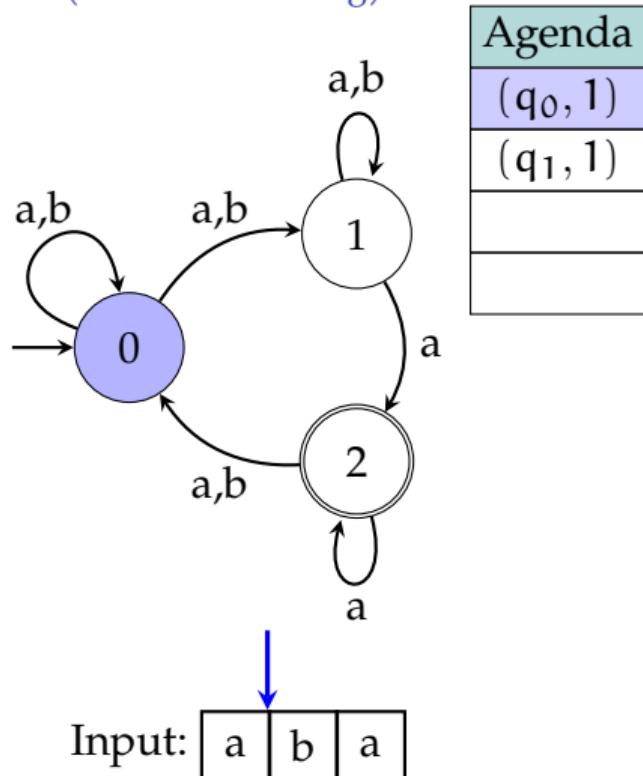
as search (with backtracking)



1. Start at q_0
2. Take the next input, place all possible actions to an *agenda*
3. Get the next action from the agenda, act
4. At the end of input
 - Accept if in an accepting state
 - Reject not in accepting state & agenda empty
 - Backtrack otherwise

NFA recognition

as search (with backtracking)

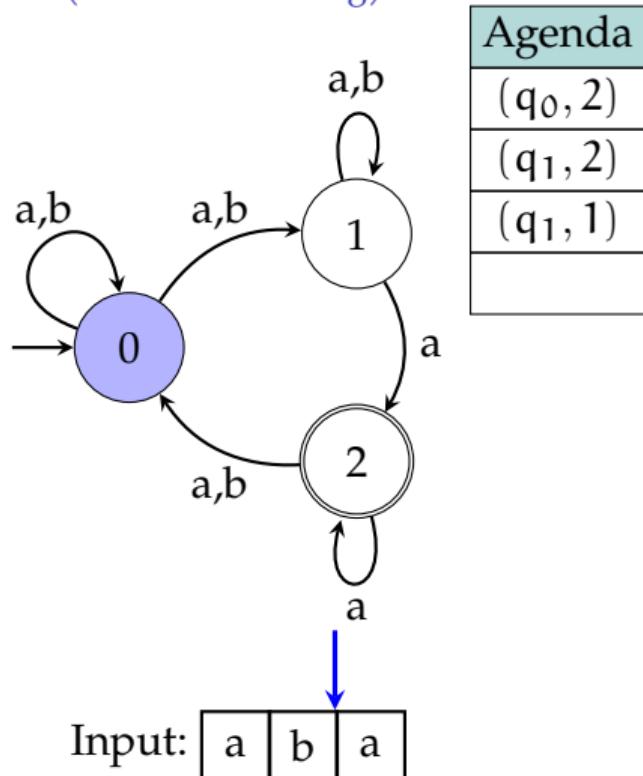


Agenda
($q_0, 1$)
($q_1, 1$)

1. Start at q_0
2. Take the next input, place all possible actions to an *agenda*
3. Get the next action from the agenda, **act**
4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda empty
Backtrack otherwise

NFA recognition

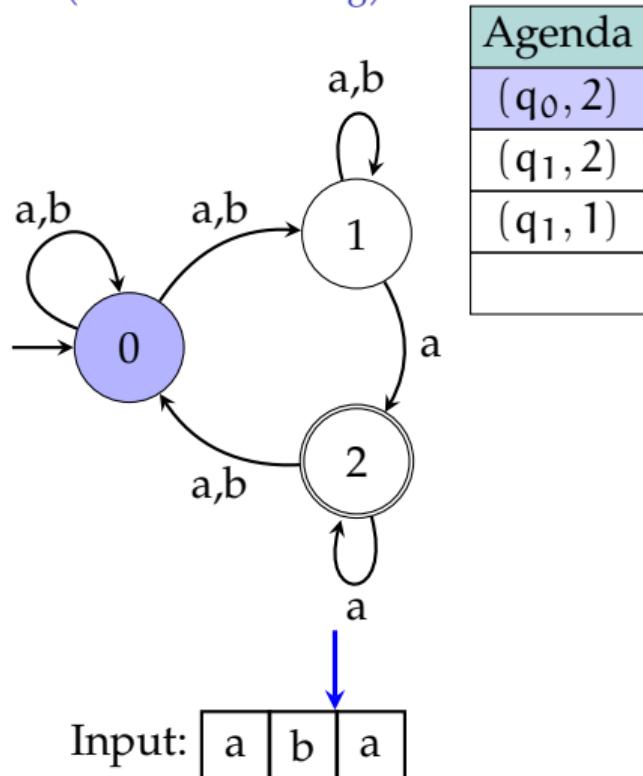
as search (with backtracking)



1. Start at q_0
2. Take the next input, place all possible actions to an *agenda*
3. Get the next action from the agenda, act
4. At the end of input
 - Accept if in an accepting state
 - Reject not in accepting state & agenda empty
 - Backtrack otherwise

NFA recognition

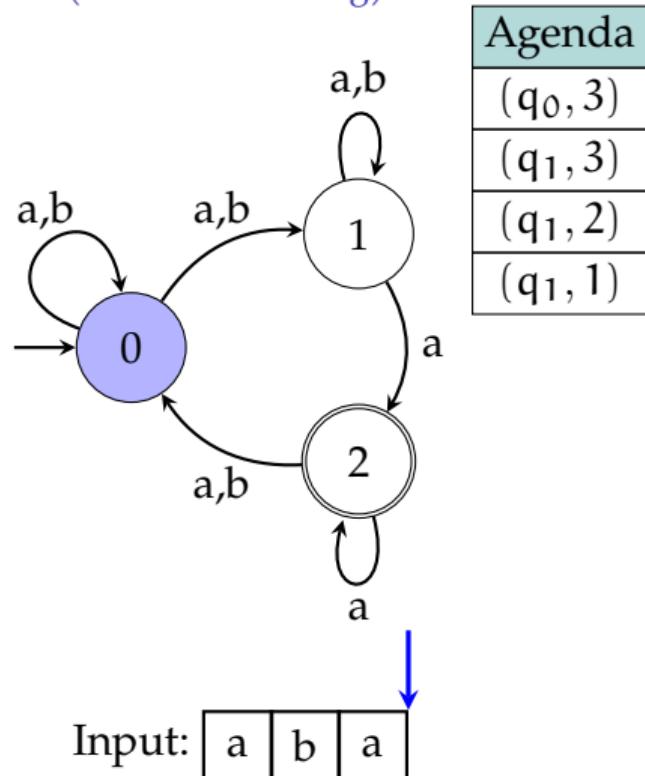
as search (with backtracking)



1. Start at q_0
2. Take the next input, place all possible actions to an *agenda*
3. Get the next action from the agenda, **act**
4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda empty
Backtrack otherwise

NFA recognition

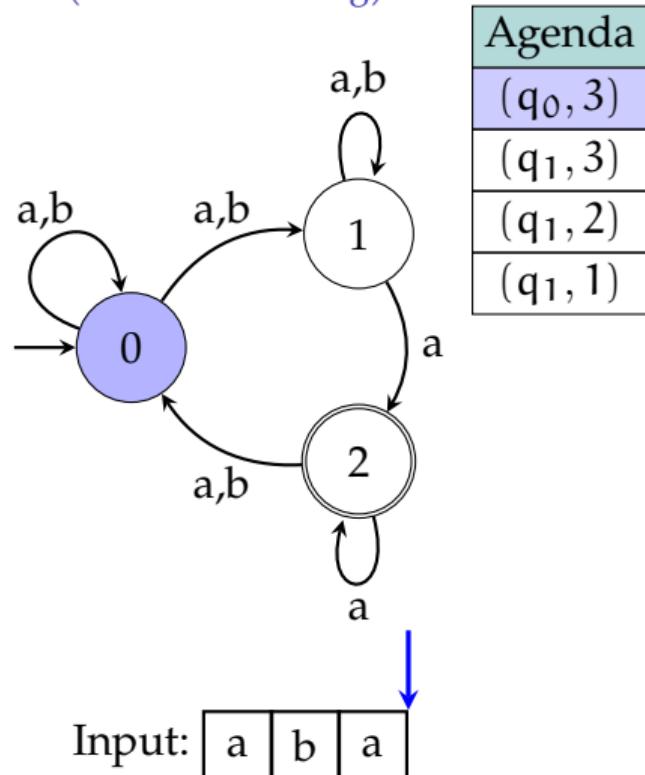
as search (with backtracking)



1. Start at q_0
2. Take the next input, place all possible actions to an *agenda*
3. Get the next action from the agenda, act
4. At the end of input
 - Accept if in an accepting state
 - Reject not in accepting state & agenda empty
 - Backtrack otherwise

NFA recognition

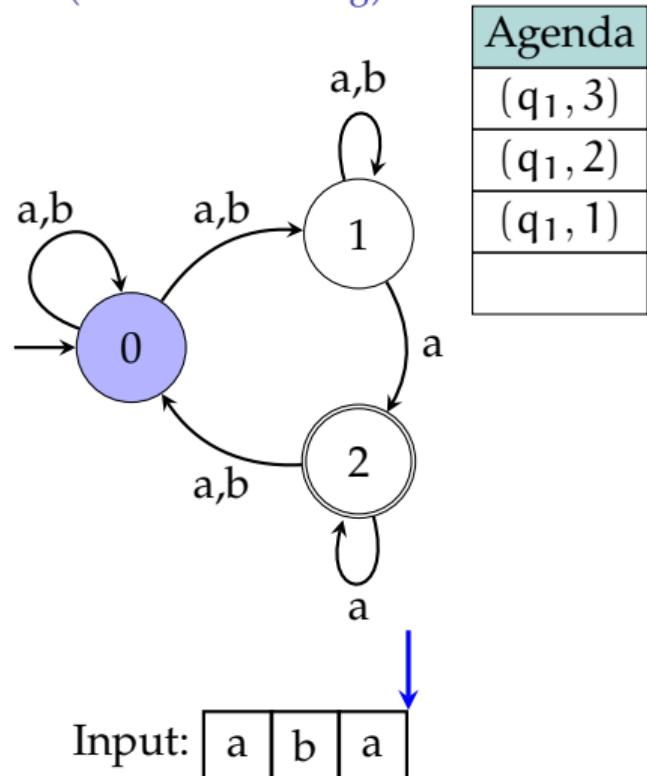
as search (with backtracking)



1. Start at q_0
2. Take the next input, place all possible actions to an *agenda*
3. Get the next action from the agenda, *act*
4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda empty
Backtrack otherwise

NFA recognition

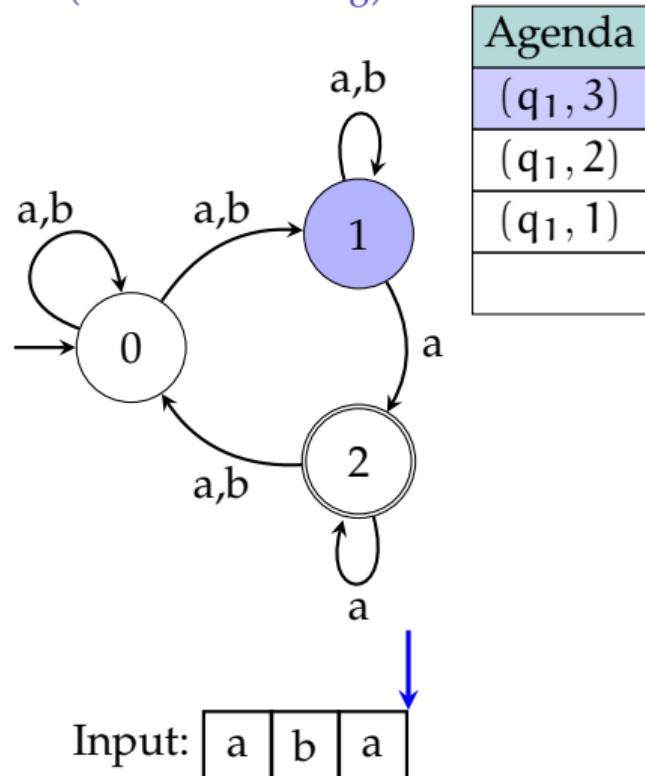
as search (with backtracking)



1. Start at q_0
2. Take the next input, place all possible actions to an *agenda*
3. Get the next action from the agenda, act
4. At the end of input
 - Accept if in an accepting state
 - Reject not in accepting state & agenda empty
 - Backtrack otherwise

NFA recognition

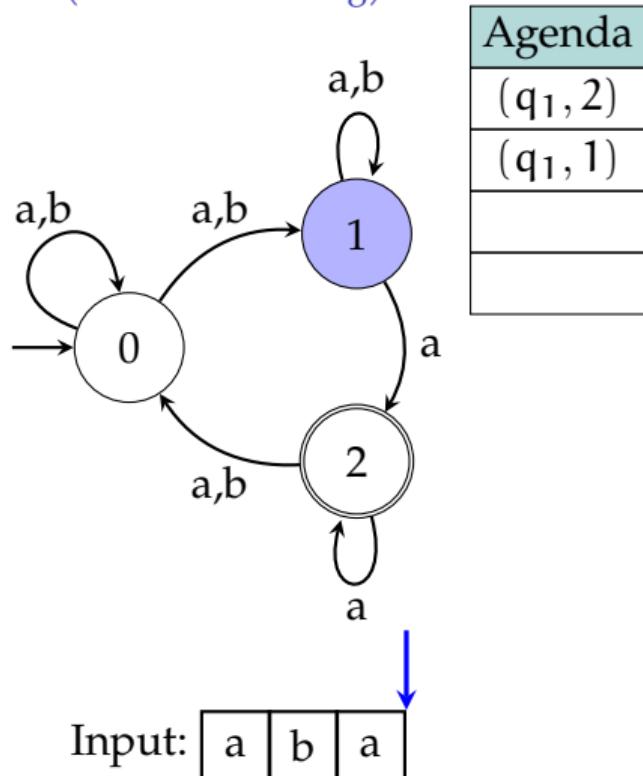
as search (with backtracking)



1. Start at q_0
2. Take the next input, place all possible actions to an *agenda*
3. Get the next action from the agenda, **act**
4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda empty
Backtrack otherwise

NFA recognition

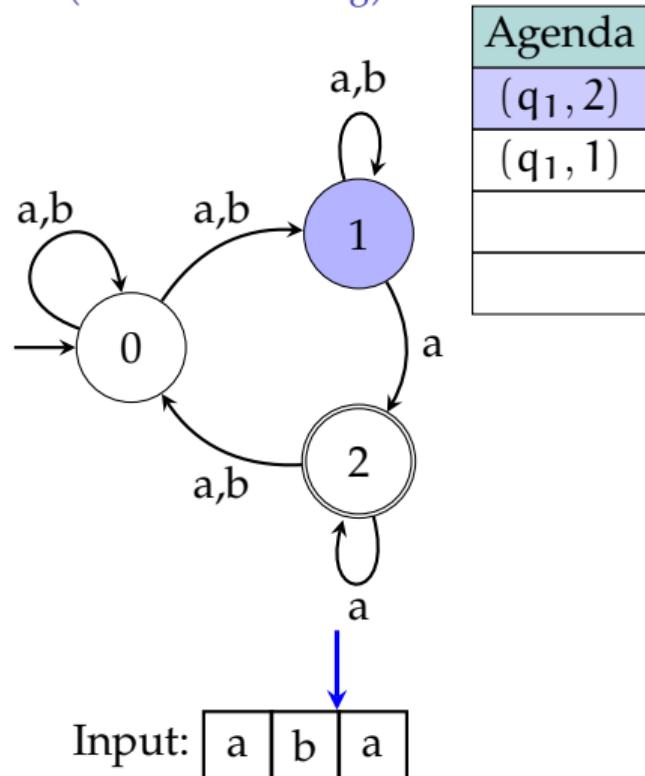
as search (with backtracking)



1. Start at q_0
2. Take the next input, place all possible actions to an *agenda*
3. Get the next action from the agenda, act
4. At the end of input
 - Accept if in an accepting state
 - Reject not in accepting state & agenda empty
 - Backtrack otherwise

NFA recognition

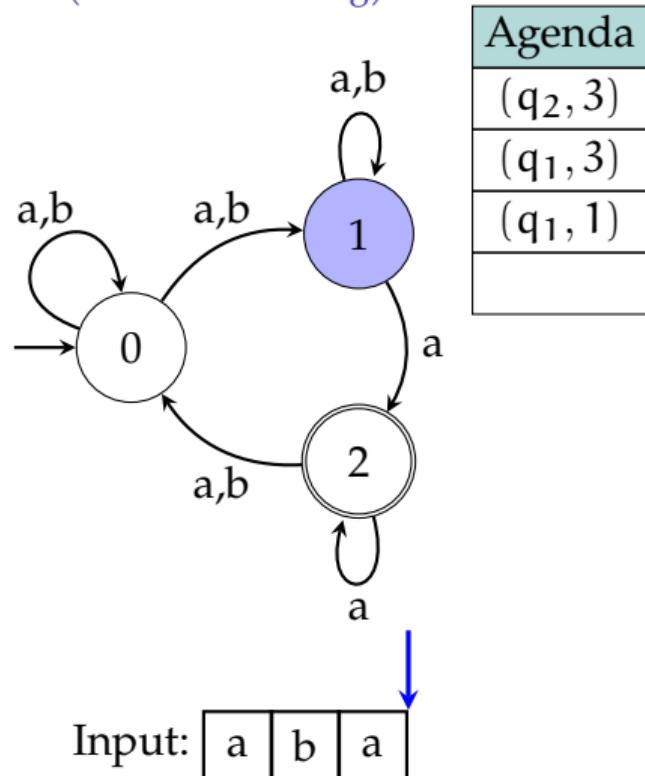
as search (with backtracking)



1. Start at q_0
2. Take the next input, place all possible actions to an *agenda*
3. Get the next action from the agenda, **act**
4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda empty
Backtrack otherwise

NFA recognition

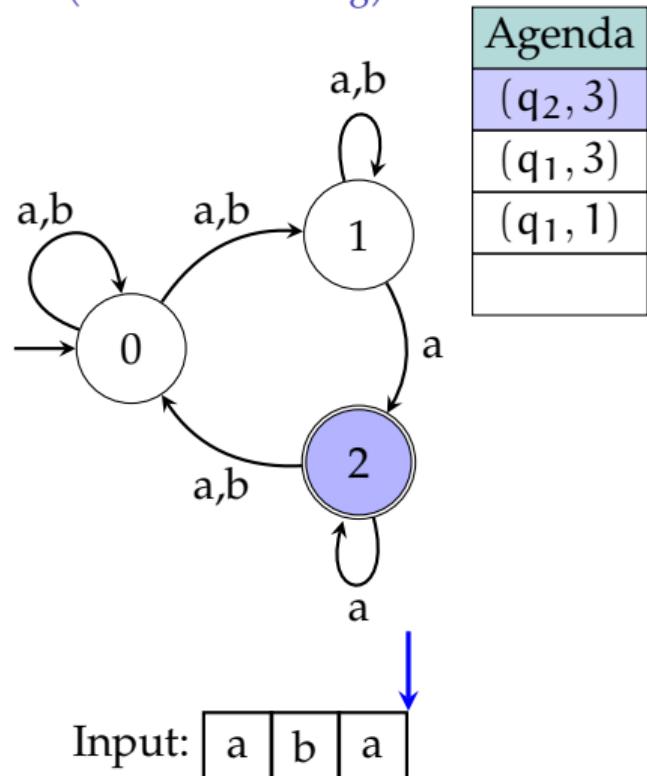
as search (with backtracking)



1. Start at q_0
2. Take the next input, place all possible actions to an *agenda*
3. Get the next action from the agenda, act
4. At the end of input
 - Accept if in an accepting state
 - Reject not in accepting state & agenda empty
 - Backtrack otherwise

NFA recognition

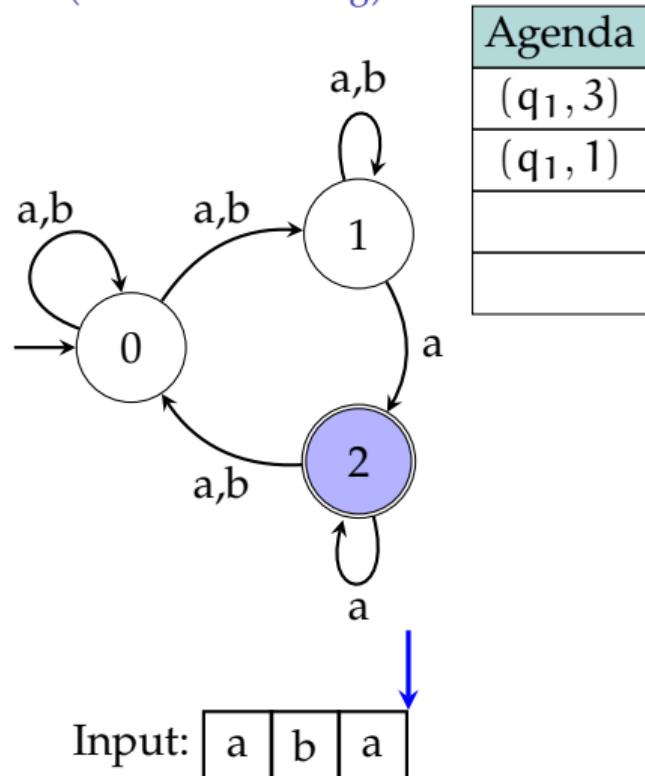
as search (with backtracking)



1. Start at q_0
2. Take the next input, place all possible actions to an *agenda*
3. Get the next action from the agenda, **act**
4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda empty
Backtrack otherwise

NFA recognition

as search (with backtracking)



1. Start at q_0
2. Take the next input, place all possible actions to an *agenda*
3. Get the next action from the agenda, act
4. At the end of input
 - Accept if in an accepting state
 - Reject not in accepting state & agenda empty
 - Backtrack otherwise

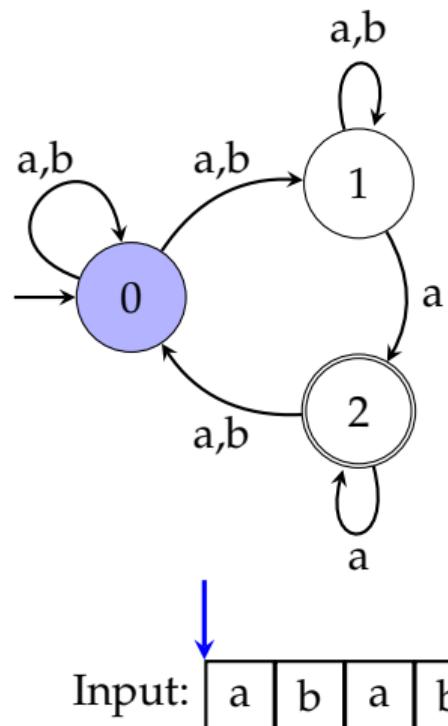
NFA recognition as search

summary

- Worst time complexity is exponential
 - Complexity is worse if we want to enumerate all derivations
- We used a stack as *agenda*, performing a depth-first search
- A queue would result in breadth-first search
- If we have a reasonable heuristic A* search may be an option
- Machine learning methods may also guide finding a fast or the best solution

NFA recognition

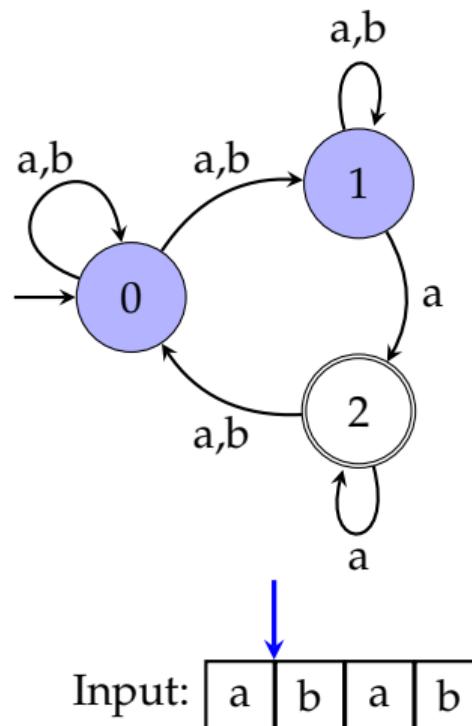
parallel version



1. Start at q_0
2. Take the next input, mark all possible next states
3. If an accepting state is marked at the end of the input, accept

NFA recognition

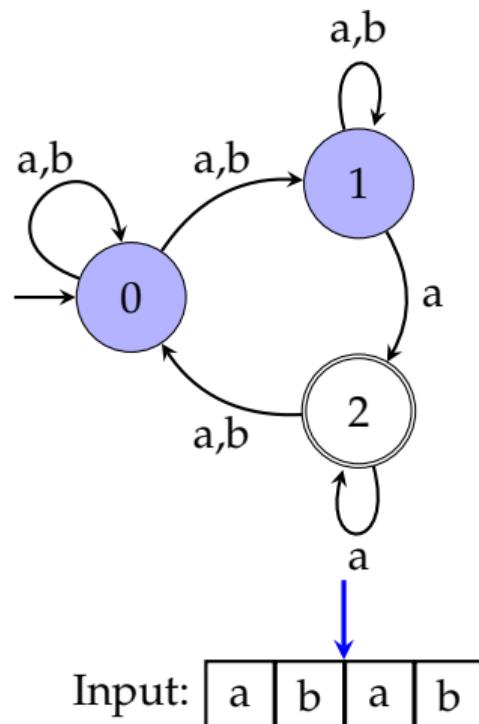
parallel version



1. Start at q_0
2. Take the next input, mark all possible next states
3. If an accepting state is marked at the end of the input, accept

NFA recognition

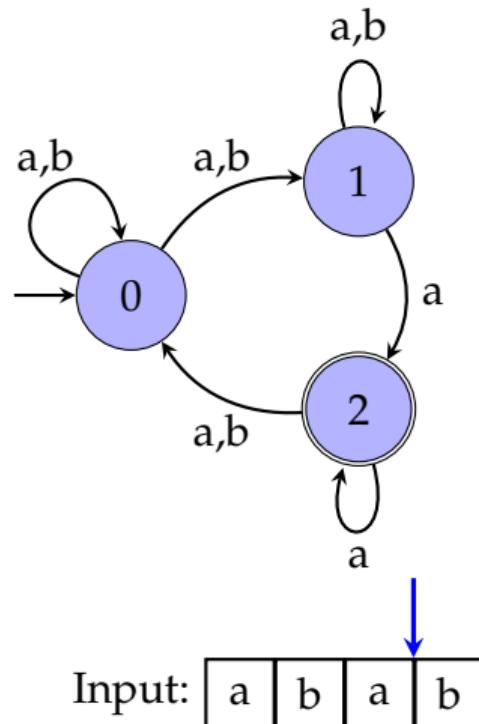
parallel version



1. Start at q_0
2. Take the next input, mark all possible next states
3. If an accepting state is marked at the end of the input, accept

NFA recognition

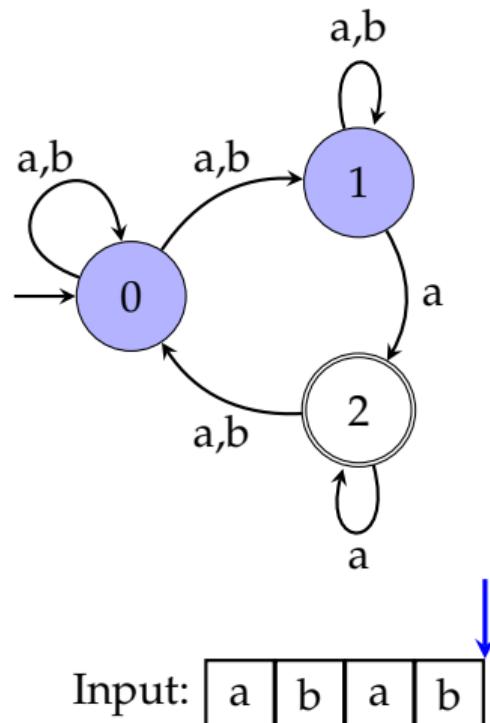
parallel version



1. Start at q_0
2. Take the next input, mark all possible next states
3. If an accepting state is marked at the end of the input, accept

NFA recognition

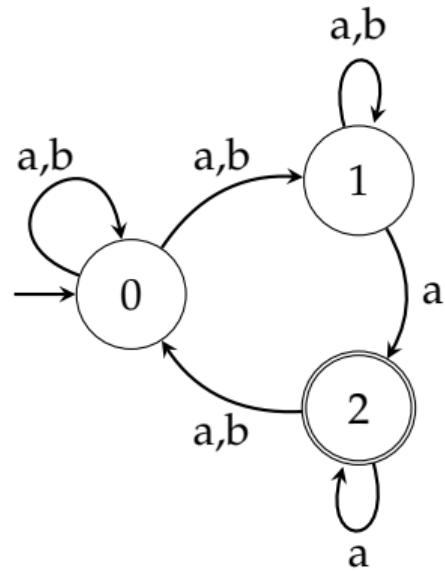
parallel version



1. Start at q_0
2. Take the next input, mark all possible next states
3. If an accepting state is marked at the end of the input, accept

NFA recognition

parallel version



1. Start at q_0
2. Take the next input, mark all possible next states
3. If an accepting state is marked at the end of the input, accept

Note: the process is *deterministic*, and *finite-state*.

Input:

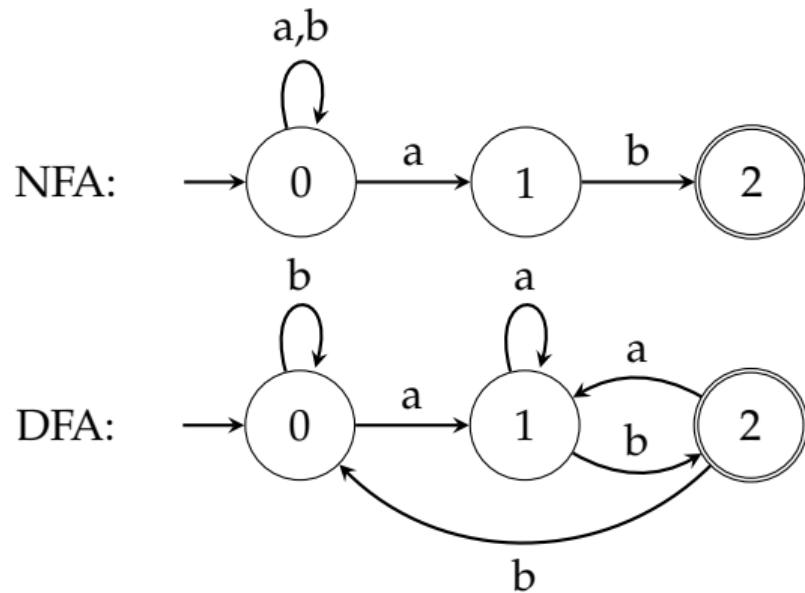
a	b	a	b
---	---	---	---

An exercise

Construct an NFA and a DFA for the language over $\Sigma = \{a, b\}$ where all sentences end with ab.

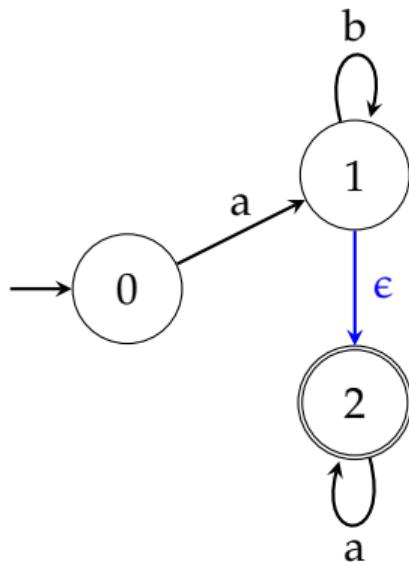
An exercise

Construct an NFA and a DFA for the language over $\Sigma = \{a, b\}$ where all sentences end with ab .



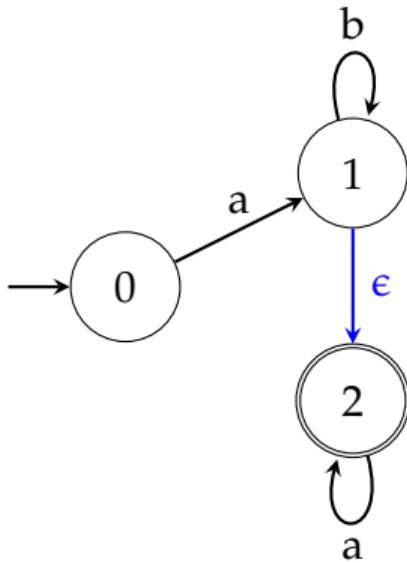
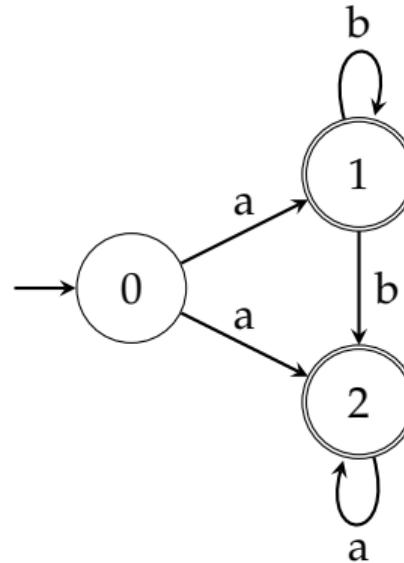
One more complication: ϵ transitions

- An extension of NFA, ϵ -NFA, allows moving without consuming an input symbol, indicated by an ϵ -transition (sometimes called a λ -transition)
- Any ϵ -NFA can be converted to an NFA

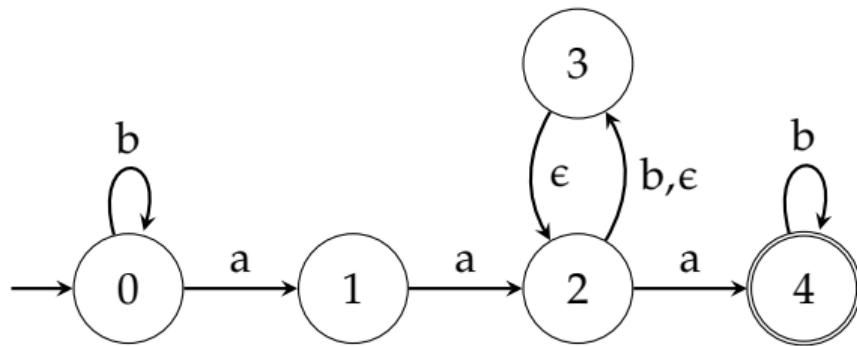


One more complication: ϵ transitions

- An extension of NFA, ϵ -NFA, allows moving without consuming an input symbol, indicated by an ϵ -transition (sometimes called a λ -transition)
- Any ϵ -NFA can be converted to an NFA



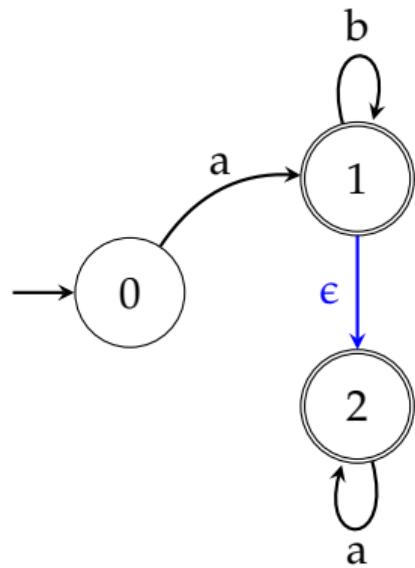
ϵ -transitions need attention



- How does the (depth-first) NFA recognition algorithm we described earlier work on this automaton?
- Can we do without ϵ transitions?

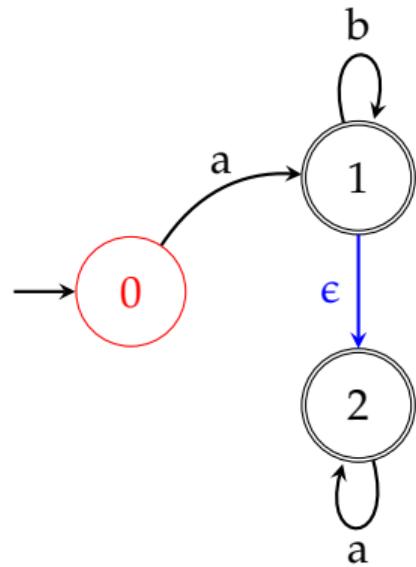
ϵ removal

- Intuition: if $i \xrightarrow{a} j \xrightarrow{\epsilon} k$, then $i \xrightarrow{a} k$.



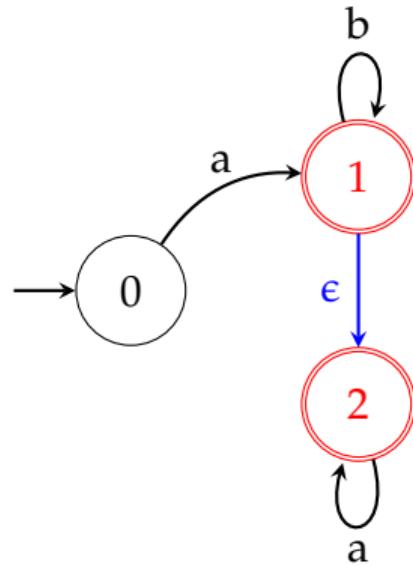
ϵ removal

- Intuition: if $i \xrightarrow{a} j \xrightarrow{\epsilon} k$, then $i \xrightarrow{a} k$.
- We start with finding the ϵ -closure of all states



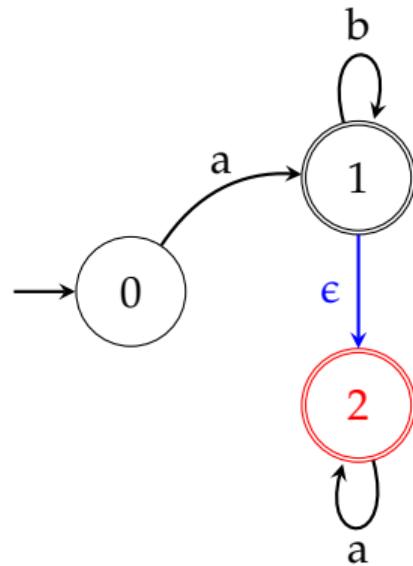
ϵ removal

- Intuition: if $i \xrightarrow{a} j \xrightarrow{\epsilon} k$, then $i \xrightarrow{a} k$.
- We start with finding the ϵ -closure of all states
 - ϵ -closure(q_0) = { q_0 }



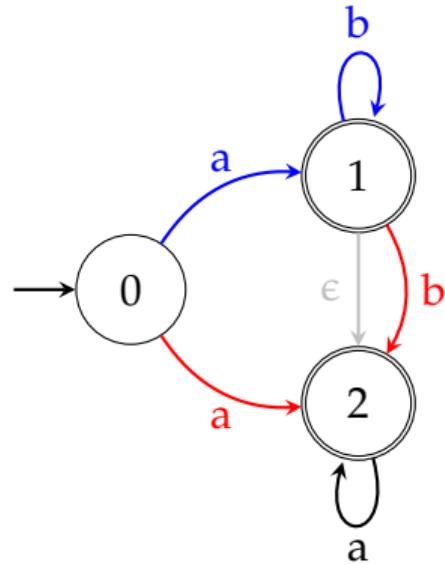
ϵ removal

- Intuition: if $i \xrightarrow{a} j \xrightarrow{\epsilon} k$, then $i \xrightarrow{a} k$.
- We start with finding the ϵ -closure of all states
 - ϵ -closure(q_0) = $\{q_0\}$
 - ϵ -closure(q_1) = $\{q_1, q_2\}$



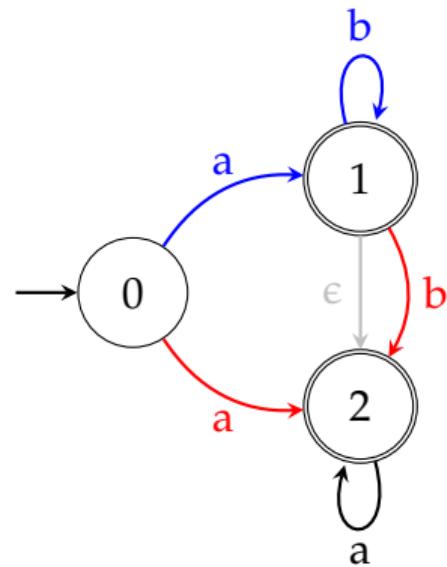
ϵ removal

- Intuition: if $i \xrightarrow{a} j \xrightarrow{\epsilon} k$, then $i \xrightarrow{a} k$.
- We start with finding the ϵ -closure of all states
 - ϵ -closure(q_0) = $\{q_0\}$
 - ϵ -closure(q_1) = $\{q_1, q_2\}$
 - ϵ -closure(q_2) = $\{q_2\}$



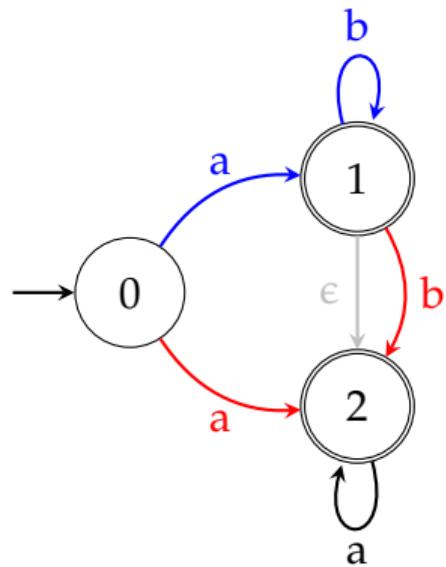
ϵ removal

- Intuition: if $i \xrightarrow{a} j \xrightarrow{\epsilon} k$, then $i \xrightarrow{a} k$.
- We start with finding the ϵ -closure of all states
 - ϵ -closure(q_0) = $\{q_0\}$
 - ϵ -closure(q_1) = $\{q_1, q_2\}$
 - ϵ -closure(q_2) = $\{q_2\}$
- For each incoming arc (q_i, q_j) with label ℓ to a node q_j
 - add a new arc (q_i, q_k) with label ℓ , for all $q_k \in \epsilon$ -closure(q_j)
 - remove all ϵ transitions (q_j, q_k) for all $q_k \in \epsilon$ -closure(q_j)



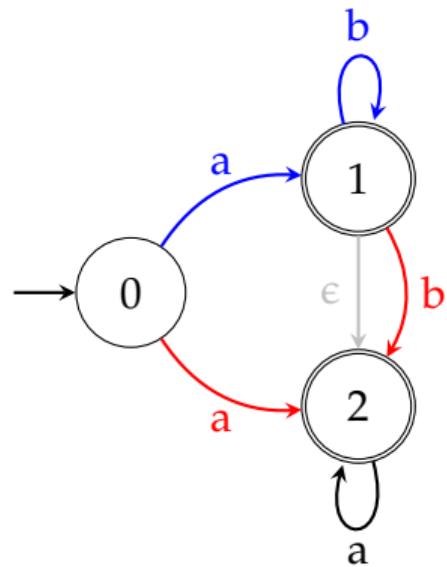
ϵ removal

- Intuition: if $i \xrightarrow{a} j \xrightarrow{\epsilon} k$, then $i \xrightarrow{a} k$.
- We start with finding the ϵ -closure of all states
 - ϵ -closure(q_0) = $\{q_0\}$
 - ϵ -closure(q_1) = $\{q_1, q_2\}$
 - ϵ -closure(q_2) = $\{q_2\}$
- For each incoming arc (q_i, q_j) with label ℓ to a node q_j
 - add a new arc (q_i, q_k) with label ℓ , for all $q_k \in \epsilon$ -closure(q_j)
 - remove all ϵ transitions (q_j, q_k) for all $q_k \in \epsilon$ -closure(q_j)
- ϵ -transitions from the initial state, and to/from the accepting states need further attention (next slide)



ϵ removal

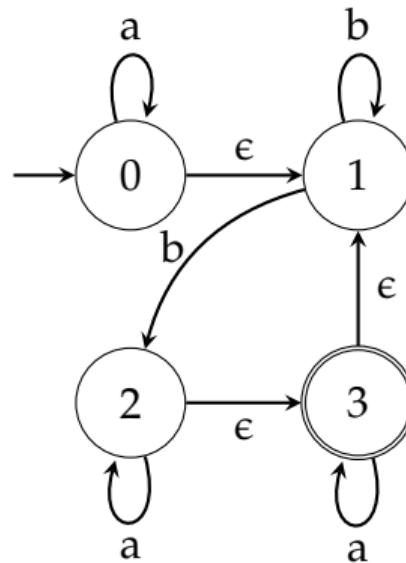
- Intuition: if $i \xrightarrow{a} j \xrightarrow{\epsilon} k$, then $i \xrightarrow{a} k$.
- We start with finding the ϵ -closure of all states
 - ϵ -closure(q_0) = $\{q_0\}$
 - ϵ -closure(q_1) = $\{q_1, q_2\}$
 - ϵ -closure(q_2) = $\{q_2\}$
- For each incoming arc (q_i, q_j) with label ℓ to a node q_j
 - add a new arc (q_i, q_k) with label ℓ , for all $q_k \in \epsilon$ -closure(q_j)
 - remove all ϵ transitions (q_j, q_k) for all $q_k \in \epsilon$ -closure(q_j)
- ϵ -transitions from the initial state, and to/from the accepting states need further attention (next slide)
- Remove useless states, if any



ϵ removal

another (less trivial) example

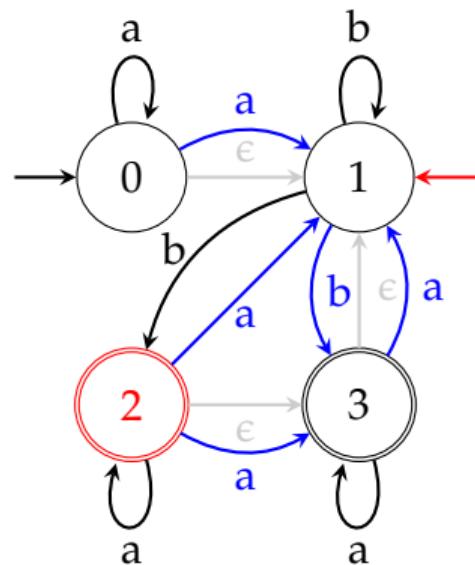
- Compute the ϵ -closure:
 - ϵ -closure(q_0) = $\{q_0, q_1\}$
 - ϵ -closure(q_1) = $\{q_1\}$
 - ϵ -closure(q_2) = $\{q_2, q_3, q_1\}$
 - ϵ -closure(q_3) = $\{q_3, q_1\}$



ϵ removal

another (less trivial) example

- Compute the ϵ -closure:
 - ϵ -closure(q_0) = $\{q_0, q_1\}$
 - ϵ -closure(q_1) = $\{q_1\}$
 - ϵ -closure(q_2) = $\{q_2, q_3, q_1\}$
 - ϵ -closure(q_3) = $\{q_3, q_1\}$
- For each incoming arc $\ell(q_i, q_j)$ to each node q_j
 - add $\ell(q_i, q_k)$ for all $q_k \in \epsilon$ -closure(q_j)
 - remove all $\epsilon(q_j, q_k)$ for all $q_k \in \epsilon$ -closure(q_j)
- For the initial state if q_0 , mark all $q_k \in \epsilon$ -closure(q_0) as initial
- For each q_i , if $q_j \in \epsilon$ -closure(q_i) is accepting, mark q_i accepting



NFA–DFA equivalence

- The language recognized by every NFA is recognized by some DFA
- The set of DFA is a subset of the set of NFA (a DFA is also an NFA)
- The same is true for ϵ -NFA
- All recognize/generate regular languages
- NFA can automatically be converted to the equivalent DFA

Why do we use an NFA then?

- NFA (or ϵ -NFA) are often easier to construct
 - Intuitive for humans (cf. earlier exercise)
 - Some representations are easy to convert to NFA rather than DFA, e.g., regular expressions
- NFA may require less memory (fewer states)

Why do we use an NFA then?

- NFA (or ϵ -NFA) are often easier to construct
 - Intuitive for humans (cf. earlier exercise)
 - Some representations are easy to convert to NFA rather than DFA, e.g., regular expressions
- NFA may require less memory (fewer states)

A quick exercise

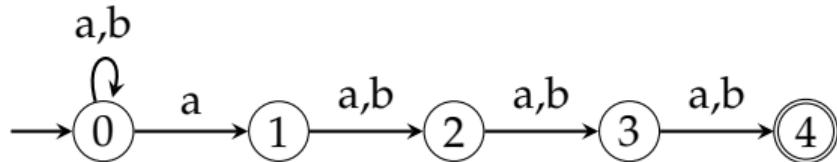
1. Construct (draw) an NFA for the language over $\Sigma = \{a, b\}$, such that 4th symbol from the end is an a

Why do we use an NFA then?

- NFA (or ϵ -NFA) are often easier to construct
 - Intuitive for humans (cf. earlier exercise)
 - Some representations are easy to convert to NFA rather than DFA, e.g., regular expressions
- NFA may require less memory (fewer states)

A quick exercise

1. Construct (draw) an NFA for the language over $\Sigma = \{a, b\}$, such that 4th symbol from the end is an a

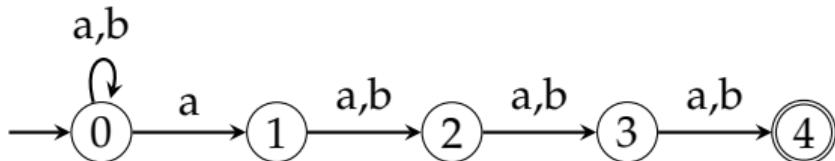


Why do we use an NFA then?

- NFA (or ϵ -NFA) are often easier to construct
 - Intuitive for humans (cf. earlier exercise)
 - Some representations are easy to convert to NFA rather than DFA, e.g., regular expressions
- NFA may require less memory (fewer states)

A quick exercise – and a not-so-quick one

1. Construct (draw) an NFA for the language over $\Sigma = \{a, b\}$, such that 4th symbol from the end is an a



2. Construct a DFA for the same language

Summary

- FSA are efficient tools with many applications
- FSA have two flavors: DFA, NFA (or maybe three: ϵ -NFA)
- DFA recognition is linear, recognition with NFA may require exponential time
- Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3) (and its successive editions), Jurafsky and Martin (2009, Ch. 2)

Next:

- FSA determinization, minimization
- Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3) (and its successive editions), Jurafsky and Martin (2009, Ch. 2)

Acknowledgments, credits, references

- Hopcroft, John E. and Jeffrey D. Ullman (1979). *Introduction to Automata Theory, Languages, and Computation*. Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley. ISBN: 9780201029888.
- Jurafsky, Daniel and James H. Martin (2009). *Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition*. second edition. Pearson Prentice Hall. ISBN: 978-0-13-504196-3.

