Finite state automata

Data Structures and Algorithms for Computational Linguistics III
(ISCL-BA-07)

Cagr1 Coltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tiibingen
Seminar fiir Sprachwissenschaft

Winter Semester 2025/26

Introduction Languages and automata DFA NFA

Why study finite-state automata?

o Finite-state automata are efficient models of computation
o There are many applications

Electronic circuit design

Workflow management

Games

Pattern matching

But more importantly ;-)

Tokenization, stemming
Morphological analysis
Spell checking

Shallow parsing/chunking

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 1/30

Introduction Languages and automata DFA NFA

Finite-state automata (FSA)

A finite-state machine is in one of a finite-number of states in a given time

The machine changes its state based on its input

Every regular language is generated /recognized by an FSA

Every FSA generates/recognizes a regular language
« Two flavors:

— Deterministic finite automata (DFA)
— Non-deterministic finite automata (NFA)

Note: the NFA is a superset of DFA.

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26

2/30

Introduction Languages and automata DFA NFA

FSA as a graph

An FSA is a directed graph

States are represented as nodes

Transitions are labeled edges
One of the states is the initial state

Some states are accepting states

accepting state

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 3 /30

Languages and automata

Languages and automata

o Recognizing strings from a language defined by a grammar is a fundamental
question in computer science

o The efficiency of computation, and required properties of computing device
depends on the grammar (and the language)

o A well-known hierarchy of grammars both in computer science and
linguistics is the Chomsky hierarchy

o Each grammar in the Chomsky hierarchy corresponds to an abstract
computing device (an automaton)

o The class of reqular grammars are the class that corresponds to finite state
automata

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 4/30

Introduction Languages and automata DFA NFA

How to describe a language?

Formal grammars

A formal grammar is a finite specification of a (formal) language.

» We consider languages as sets of strings, for a finite language, we can
(conceivably) list all strings
« How to define an infinite language?
— Is the definition {ba, baa, baaa, baaaa, ...} ‘formal enough’?

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 5/30

Introduction Languages and automata DFA NFA

How to describe a language?

Formal grammars

A formal grammar is a finite specification of a (formal) language.

» We consider languages as sets of strings, for a finite language, we can
(conceivably) list all strings

« How to define an infinite language?

— Is the definition {ba, baa, baaa, baaaa, ...} ‘formal enough’?
- Using regular expressions, we can define it as baa*

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 5/30

Introduction Languages and automata DFA NFA

How to describe a language?

Formal grammars

A formal grammar is a finite specification of a (formal) language.

» We consider languages as sets of strings, for a finite language, we can
(conceivably) list all strings

« How to define an infinite language?

— Is the definition {ba, baa, baaa, baaaa, ...} ‘formal enough’?
- Using regular expressions, we can define it as baa*
— We will introduce a more general method for defining languages

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 5/30

Languages and automata

Phrase structure grammars

C. Coltekin,

o A phrase structure grammar is a generative device
« If a given string can be generated by the grammar, the string is in the language
o The grammar generates all and the only strings that are valid in the language

A phrase structure grammar has the following components

L A set of terminal symbols
N A set of non-terminal symbols
S € N A special non-terminal, called the start symbol
R A set of rewrite rules or production rules of the form:

x = f

which means that the sequence « can be rewritten as 3 (both « and 3 are
sequences of terminal and non-terminal symbols)
o The strings in the language of the grammar is those that can be derived from S
using the rewrite operations

SfS / University of Tiibingen Winter Semester 2025/26

6/30

Languages and automata

Chomsky hierarchy and automata

Grammar class Rules Automata
[Unrestricted grammars a—p Turing machines)
/Context—sensitive grammars xAPB—ayp Linear-bounded automata)
[Context-free grammars A—ox Pushdown automata |
Regular grammars A—>a A—a Finite state automata
A—aB | A—Ba
\\\ //

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 7 /30

Introduction Languages and automata DFA NFA

Regular grammars: definition

A regular grammar is a tuple G = (X, N, S, R) where
L is an alphabet of terminal symbols
N are a set of non-terminal symbols
S is a special ‘start’ symbol € N
R

is a set of rewrite rules following one of the following patterns (A,B € N,
a € %, e is the empty string)

Left regular Right regular
1. A—>a 1. A—=a
2. A= Ba 2. A—aB
3. A—e 3. A—>e

. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26
y g

8/30

Introduction Languages and automata DFA NFA

Regular languages: some properties/operations

L1L, Concatenation of two languages £1 and £;: any sentence of £1 followed by
any sentence of £;

L* Kleene star of £: £ concatenated with itself 0 or more times
LR Reverse of L: reverse of any string in £
£ Complement of £: all strings in L% except the onesin £ (% — £)
L1 UL, Union of languages £ and £;: strings that are in any of the languages
L1 N L, Intersection of languages £1 and £;: strings that are in both languages

Regular languages are closed under all of these operations.

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 9/30

Introduction Languages and automata DFA NFA

Three ways to define a regular language

o A language is regular if there is regular grammar that generates/recognizes it
o A language is regular if there is an FSA that generates/recognizes it

o A language is regular if we can define a regular expressions for the language

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 10 /30

Introduction Languages and automata DFA NFA

DFA: formal definition

Formally, a deterministic finite state automaton, M, is a tuple (X, Q, qo, F, A) with
L is the alphabet, a finite set of symbols
Q a finite set of states
qo is the start state, qo € Q
F is the set of final states, F C Q

A is a function that takes a state and a symbol in the alphabet, and returns
another state (A: Q x £ — Q)

At any state and for any input,
a DFA has a single well-defined action to take.

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 11 /30

Introduction Languages and automata DFA NFA

DFA: formal definition

an example
L ={a,b}
Q ={q0,q1,492}
do = 9o
F ={q2}

A :{(q07a) —]2, (qO)b) —q1,
(g1,a) = q2, (q1,b) = q1}

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 12 /30

Introduction Lang s and automata DFA NFA

Another note on DFA

o Is this FSA deterministic?

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 13 /30

Introduction Languages and automata DFA NFA

Another note on DFA

error or sink state

o Is this FSA deterministic?

o To make all transitions well-defined,
we can add a sink (or error) state

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 13 /30

Introduction Languages and automata DFA NFA

Another note on DFA

error or sink state

o Is this FSA deterministic?
o To make all transitions well-defined,
we can add a sink (or error) state

« For brevity, we skip the explicit error
state —>

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 13 /30

Introduction Languages and automata DFA NFA

Another note on DFA

error or sink state

o Is this FSA deterministic?

o To make all transitions well-defined,
we can add a sink (or error) state

« For brevity, we skip the explicit error
state —>

— In that case, when we reach a dead
end, recognition fails

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 13 /30

Introduction Languages and automata DFA NFA

DFA: the transition table

transition table

symbol

a b

—0 1
T 12 1
RO N %)

— marks the start state

* marks the accepting state(s)

Winter Semester 2025/26 14 /30

C. Coltekin, SfS / University of Tiibingen

Introduction

DFA: the transition table

Languages and automata DFA NFA

transition table
symbol
a b
—0 2 1
§ 1 2 1
@ ¥ 3 3
3 3 3

— marks the start state
* marks the accepting state(s)

C. Coltekin, SfS / University of Tiibingen

A
a

a,b
’ @

Winter Semester 2025/26

14 /30

Introduction Languages and automata DFA NFA

DFA recognition

1. Start at qo

2. Process an input symbol, move
accordingly

3. Accept if in a final state at the end of

b
the input b ’

Input: | b uﬂ

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 15 /30

Introduction Languages and automata DFA NFA

DFA recognition

1. Start at qo

2. Process an input symbol, move
accordingly

3. Accept if in a final state at the end of

the input b °

Input: IEEIEI

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 15 /30

Introduction Languages and automata DFA NFA

DFA recognition

1. Start at qo

2. Process an input symbol, move
accordingly

3. Accept if in a final state at the end of

the input b °

Input: IZIEEI

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 15 /30

Introduction Languages and automata DFA NFA

DFA recognition

1. Start at qo

2. Process an input symbol, move
accordingly

3. Accept if in a final state at the end of

the input b ’

Input:

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 15 /30

Introduction Languages and automata DFA NFA

DFA recognition

1. Start at qo

2. Process an input symbol, move
accordingly

3. Accept if in a final state at the end of

the input b ’

Input:

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 15 /30

Introduction Languages and automata DFA NFA

DFA recognition

1. Start at qo

2. Process an input symbol, move
accordingly

3. Accept if in a final state at the end of

the input b G

o What is the complexity of the @
. a
algorithm?
« How about inputs:
- bbbb
- aa

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 15 /30

Introduction Lang s and automata DFA NFA

A few questions

o What is the language recognized by
this FSA?

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 16 /30

Introduction Languages and automata DFA NFA

A few questions

o What is the language recognized by b
this FSA?
o Can you draw a simpler DFA for the b G
same language?
—> a

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 16 / 30

Introduction Languages and automata DFA NFA

A few questions

o What is the language recognized by b
this FSA?

o Can you draw a simpler DFA for the b G
same language?

o Draw a DFA recognizing strings —> a
with even number of ‘a’s over

> ={a,b}

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 16 / 30

Introduction Languages and automata DFA NFA

Non-deterministic finite automata

Formal definition

A non-deterministic finite state automaton, M, is a tuple (Z, Q, qo, F, A) with
L is the alphabet, a finite set of symbols
Q a finite set of states
qo is the start state, qo € Q
F is the set of final states, F C Q
A is a function from (Q, X) to P(Q), power setof Q (A: Q x £ — P(Q))

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 17 / 30

Introduction Languages and automata DFA NFA

An example NFA
[transition table
symbol
a b
—0 0,1 0,1
§ 1 12 1
“neoo*2 0,2 0

« We have nondeterminism, e.g., if the first input is a, we need to choose
between states 0 or 1
o Transition table cells have sets of states

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26

18 /30

Introduction Languages and automata DFA NFA

Dealing with non-determinism

e Follow one of the links, store alternatives, and backtrack on failure

« Follow all options in parallel

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 19 /30

Introduction

NFA recognition

as search (with backtracking)

Input:

C. Coltekin, SfS / University of Tiibingen

Agenda

Languages and automata DFA NFA

1. Start at qo

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act
4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda

empty
Backtrack otherwise

Winter Semester 2025/26 20 /30

Introduction

NFA recognition

as search (with backtracking)

Input: EEIEI

C. Coltekin, SfS / University of Tiibingen

Agenda

(go, 1)

(g1, 1)

Languages and automata DFA NFA

1. Start at qo

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act
4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda

empty
Backtrack otherwise

Winter Semester 2025/26 20 /30

Introduction

NFA recognition

as search (with backtracking)

Input: EEIEI

C. Coltekin, SfS / University of Tiibingen

Agenda

(go, 1)

(g1, 1)

Languages and automata DFA NFA

1. Start at qo

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act
4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty
Backtrack otherwise

Winter Semester 2025/26 20 /30

Introduction

NFA recognition

as search (with backtracking)

Input: EIEEI

C. Coltekin, SfS / University of Tiibingen

Agenda

(go0,2)

(q1,2)

(g1, 1)

Languages and automata DFA NFA

1. Start at qo

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act
4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda

empty
Backtrack otherwise

Winter Semester 2025/26 20 /30

Introduction

NFA recognition

as search (with backtracking)

Input: EIEEI

C. Coltekin, SfS / University of Tiibingen

Agenda

(qo0,2)

(q1,2)

(g1, 1)

Languages and automata DFA NFA

1. Start at qo

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act
4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty
Backtrack otherwise

Winter Semester 2025/26 20 /30

Introduction Languages and automata DFA NFA

NFA recognition

as search (with backtracking)

Agenda
(q0,3)
q1, 1. Start at qo

(q1,3)
(q1,2) 2. Take the next input, place all
(q1,1) possible actions to an agenda

3. Get the next action from the agenda,
act
4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda

empty
Backtrack otherwise

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 20 /30

Introduction Languages and automata DFA NFA

NFA recognition

as search (with backtracking)

Agenda
(q0,3)
q1, 1. Start at qo

(q1,3)
(q1,2) 2. Take the next input, place all
(q1,1) possible actions to an agenda

3. Get the next action from the agenda,
act
4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda
empty
Backtrack otherwise

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 20 /30

Introduction Languages and automata DFA NFA

NFA recognition
as search (with backtracking)
Agenda
(q1,3)
(q1,2) 1. Start at qo
(q1,1) 2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act
4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda

empty
Backtrack otherwise

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 20 /30

Introduction Languages and automata DFA NFA

NFA recognition
as search (with backtracking)
Agenda
(q1,3)
(q1,2) 1. Start at qo
(q1,1) 2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act
4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda
empty
Backtrack otherwise

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 20 /30

Introduction Languages and automata DFA NFA

NFA recognition
as search (with backtracking)
Agenda
(q1,2)
(q1,1) 1. Start at qo

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act
4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda

empty
Backtrack otherwise

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 20 /30

Introduction

NFA recognition

as search (with backtracking)

Input: EIEEI

C. Coltekin, SfS / University of Tiibingen

Agenda

(q1,2)

(g1, 1)

Languages and automata DFA NFA

1. Start at qo

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act
4. At the end of input

Accept if in an accepting state
Reject not in accepting state & agenda
empty
Backtrack otherwise

Winter Semester 2025/26 20 /30

Introduction Languages and automata DFA NFA

NFA recognition
as search (with backtracking)
Agenda
(92,3)
(d1,3) 1. Startat qo
(q1,1) 2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act
4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda

empty
Backtrack otherwise

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 20 /30

Introduction Languages and automata DFA NFA

NFA recognition
as search (with backtracking)
Agenda
(92,3)
(d1,3) 1. Startat qo
(q1,1) 2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act
4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda
empty
Backtrack otherwise

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 20 /30

Introduction Languages and automata DFA NFA

NFA recognition
as search (with backtracking)
Agenda
(q1,3)
(q1,1) 1. Start at qo

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act
4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda

empty
Backtrack otherwise

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 20 /30

Introduction Languages and automata DFA NFA

NFA recognition as search

summary

Worst time complexity is exponential
— Complexity is worse if we want to enumerate all derivations

We used a stack as agenda, performing a depth-first search

A queue would result in breadth-first search

If we have a reasonable heuristic A* search may be an option

Machine learning methods may also guide finding a fast or the best solution

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 21/30

Introduction Languages and automata DFA NFA

NFA recognition

parallel version

1. Start at qo

2. Take the next input, mark all possible
next states

3. If an accepting state is marked at the end
of the input, accept

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 22 /30

Introduction Languages and automata DFA NFA

NFA recognition

parallel version

1. Start at qo

2. Take the next input, mark all possible
next states

3. If an accepting state is marked at the end
of the input, accept

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 22 /30

Introduction Languages and automata DFA NFA

NFA recognition

parallel version

1. Start at qo

2. Take the next input, mark all possible
next states

3. If an accepting state is marked at the end
of the input, accept

iput [6 a5

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 22 /30

Introduction Languages and automata DFA NFA

NFA recognition

parallel version

1. Start at qo

2. Take the next input, mark all possible
next states

3. If an accepting state is marked at the end
of the input, accept

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 22 /30

Introduction Languages and automata DFA NFA

NFA recognition

parallel version

1. Start at qo

2. Take the next input, mark all possible
next states

3. If an accepting state is marked at the end
of the input, accept

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 22 /30

Introduction Languages and automata DFA NFA

NFA recognition

parallel version

1. Start at qo

2. Take the next input, mark all possible
next states

3. If an accepting state is marked at the end
of the input, accept

Note: the process is deterministic, and
finite-state.

Input: nunn

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 22 /30

s and automata DFA NFA

Introduction Lang

An exercise

Construct an NFA and a DFA for the language over L = {a, b} where all sen-
tences end with ab.

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 23/30

Introduction Languages and automata DFA NFA

An exercise

Construct an NFA and a DFA for the language over & = {a, b} where all sen-
tences end with ab.

%“) G
D

b

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 23 /30

Introduction Languages and automata DFA NFA

One more complication: € transitions

« An extension of NFA, e-NFA, allows moving without consuming an input
symbol, indicated by an e-transition (sometimes called a A-transition)

o Any e-NFA can be converted to an NFA

°

© o

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 24 /30

Introduction Languages and automata DFA NFA

One more complication: € transitions

« An extension of NFA, e-NFA, allows moving without consuming an input
symbol, indicated by an e-transition (sometimes called a A-transition)

o Any e-NFA can be converted to an NFA
b
A
~ Oy
a

a

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 24 /30

Introduction Languages and automata DFA NFA

e-transitions need attention

~ o

o How does the (depth-first) NFA recognition algorithm we described earlier
work on this automaton?

e Can we do without e transitions?

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 25 /30

Introduction Languages and automata DFA NFA

€ removal

o Intuition: if , then @i’(@

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 26 /30

Introduction Languages and automata DFA NFA

€ removal

o Intuition: if , then @i’(@

o We start with finding the e-closure of all states

0 €

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 26 /30

Introduction Languages and automata DFA NFA

€ removal

o Intuition: if , then @i’(@

o We start with finding the e-closure of all states
— e-closure(qo) = {qo}

° €

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 26 /30

Introduction Languages and automata DFA NFA

€ removal

o Intuition: if , then @i’(@

o We start with finding the e-closure of all states

- e-closure(qo) ={qo}
— e-closure(q1) ={q1, q2} a

b
ON
a

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 26 /30

Introduction Languages and automata DFA NFA

€ removal

o Intuition: if , then @i’(@

o We start with finding the e-closure of all states
— e-closure(qo) = {qo}

b
— e-closure(q1) ={q1, q2} a
- e-closure(qz) ={qz2}
O
~(2)
a

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 26 /30

Introduction Languages and automata DFA NFA

€ removal

o Intuition: if , then @i’(@

o We start with finding the e-closure of all states b
- e-closure(qo) = {qo}
— e-closure(q1) ={q1, q2} a @
— e-closure(q2) ={qz}

o For each incoming arc (g3, q;) with label € to a node g °

_ add a new arc (qs, qx) with label ¢, for all b

qx € e-closure(q;)

- remove all e transitions (qj, qx) for all a @
qx € e-closure(q;)
a

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 26 /30

Introduction Languages and automata DFA NFA

€ removal

Intuition: if , then @i’®

We start with finding the e-closure of all states b
- e-closure(qo) = {qo}
— e-closure(q1) ={q1, q2} a @
— e-closure(q2) ={qz}
o For each incoming arc (g3, q;) with label € to a node g °
— add a new arc (qi, qx) with label ¢, for all

qx € e-closure(q;)
- remove all e transitions (qj, qx) for all a
a

b

qx € e-closure(q;)

e-transitions from the initial state, and to/from the
accepting states need further attention (next slide)

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 26 /30

Introduction Languages and automata DFA NFA

€ removal

Intuition: if , then @i’®

We start with finding the e-closure of all states b
- e-closure(qo) = {qo}
— e-closure(q1) ={q1, q2} a @
— e-closure(q2) ={qz}
o For each incoming arc (g3, q;) with label € to a node g °
— add a new arc (qi, qx) with label ¢, for all

qx € e-closure(q;)
- remove all e transitions (qj, qx) for all a
a

b

qx € e-closure(q;)

e-transitions from the initial state, and to/from the
accepting states need further attention (next slide)

Remove useless states, if any

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 26 /30

Introduction Languages and automata DFA NFA

€ removal

another (less trivial) example

o Compute the e-closure:

e-closure(qo) ={qo0,q1}
e-closure(q1) ={q1}
e-closure(qz) ={q2,93,91}
e-closure(qs) ={qs,q1}

C. Coltekin, SfS / University of Tiibingen

Winter Semester 2025/26

27 /30

Introduction Languages and automata DFA NFA

€ removal

another (less trivial) example

Compute the e-closure:
- e-closure(qo) ={q0, q1}
- e-closure(qq) ={q1} a
— e-closure(q2) ={q2,93, 91}
- e-closure(q3) ={qs3,q1}

— le——
For each incoming arc {(q4, gj) to each node g b
- add £(qs, qx) for all qx € e-closure(q;) a
- remove all €(qj, qi) for all qx € e-closure(q;) @ @
a

For the initial state if qo, mark all
qx € e-closure(qo) as initial

For each qj, if q; € e-closure(q;) is accepting, a a
mark q; accepting

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 27 /30

Introduction Languages and automata DFA NFA

NFA-DFA equivalence

The language recognized by every NFA is recognized by some DFA
The set of DFA is a subset of the set of NFA (a DFA is also an NFA)

The same is true for e-NFA

All recognize/generate regular languages

NFA can automatically be converted to the equivalent DFA

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 28 /30

Introduction Languages and automata DFA NFA

Why do we use an NFA then?

o NFA (or e-NFA) are often easier to construct
— Intuitive for humans (cf. earlier exercise)
- Some representations are easy to convert to NFA rather than DFA, e.g., regular
expressions

o NFA may require less memory (fewer states)

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 29 /30

Introduction Languages and automata DFA NFA

Why do we use an NFA then?

o NFA (or e-NFA) are often easier to construct
— Intuitive for humans (cf. earlier exercise)
- Some representations are easy to convert to NFA rather than DFA, e.g., regular
expressions

o NFA may require less memory (fewer states)

A quick exercise

1. Construct (draw) an NFA for the language over L = {a, b}, such that 4th
symbol from the end is an a

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 29 /30

Introduction Languages and automata DFA NFA

Why do we use an NFA then?

o NFA (or e-NFA) are often easier to construct
— Intuitive for humans (cf. earlier exercise)
- Some representations are easy to convert to NFA rather than DFA, e.g., regular
expressions

o NFA may require less memory (fewer states)

A quick exercise

1. Construct (draw) an NFA for the language over L = {a, b}, such that 4th
symbol from the end is an a

ab

a ~ ab ~ ab ~ ab
{% O—@——@®

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 29 /30

Introduction Languages and automata DFA NFA

Why do we use an NFA then?

o NFA (or e-NFA) are often easier to construct
— Intuitive for humans (cf. earlier exercise)
- Some representations are easy to convert to NFA rather than DFA, e.g., regular
expressions

o NFA may require less memory (fewer states)

A quick exercise — and a not-so-quick one

1. Construct (draw) an NFA for the language over L = {a, b}, such that 4th
symbol from the end is an a

ab

a ~ ab ~ ab ~ ab
{% O—@——@®

2. Construct a DFA for the same language

C. Coltekin,

SfS / University of Ttibingen Winter Semester 2025/26

29 /30

Summary

« FSA are efficient tools with many applications
o FSA have two flavors: DFA, NFA (or maybe three: e-NFA)

« DFA recognition is linear, recognition with NFA may require exponential time

Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3) (and its successive
editions), Jurafsky and Martin (2009, Ch. 2)

Next:
e FSA determinization, minimization

 Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3) (and its successive
editions), Jurafsky and Martin (2009, Ch. 2)

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 30/ 30

Acknowledgments, credits, references

[4 Hopcroft, John E. and Jeffrey D. Ullman (1979). Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley Series in Computer Science and
Information Processing. Addison-Wesley. 1sBN: 9780201029888.

[Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics, and Speech
Recognition. second edition. Pearson Prentice Hall. 1sBn: 978-0-13-504196-3.

C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26

Al

blank
C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 A2

blank
C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 A3

blank
C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 A4

blank
C. Coltekin, SfS / University of Tiibingen Winter Semester 2025/26 A5

	Finite state automata
	Introduction
	Why study finite-state automata?
	Finite-state automata (FSA)
	FSA as a graph

	Languages and automata
	Languages and automata
	How to describe a language?
	How to describe a language?
	How to describe a language?
	Phrase structure grammars
	Chomsky hierarchy and automata
	Regular grammars: definition
	Regular languages: some properties/operations
	Three ways to define a regular language

	Deterministic finite automata
	DFA: formal definition
	DFA: formal definition
	Another note on DFA
	Another note on DFA
	Another note on DFA
	Another note on DFA
	DFA: the transition table
	DFA: the transition table
	DFA recognition
	DFA recognition
	DFA recognition
	DFA recognition
	DFA recognition
	DFA recognition
	A few questions
	A few questions
	A few questions

	Non-deterministic finite automata
	Non-deterministic finite automata
	An example NFA
	Dealing with non-determinism
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition as search
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	An exercise
	An exercise
	One more complication: transitions
	One more complication: transitions
	-transitions need attention
	 removal
	 removal
	 removal
	 removal
	 removal
	 removal
	 removal
	 removal
	 removal
	 removal
	NFA–DFA equivalence
	Why do we use an NFA then?
	Why do we use an NFA then?
	Why do we use an NFA then?
	Why do we use an NFA then?

	
	Summary

	Appendix
	Acknowledgments, credits, references

