

FSA and regular languages

Data Structures and Algorithms for Computational Linguistics III
(ISCL-BA-07)

Çağrı Cöltekin

ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2025/26

Three ways to define a regular language

- A language is regular if there is regular grammar that generates/recognizes it
- A language is regular if there is an FSA that generates/recognizes it
- A language is regular if we can define a regular expressions for the language

Regular languages: some properties/operations

$\mathcal{L}_1 \mathcal{L}_2$ Concatenation of two languages \mathcal{L}_1 and \mathcal{L}_2 : any sentence of \mathcal{L}_1 followed by any sentence of \mathcal{L}_2

\mathcal{L}^* Kleene star of \mathcal{L} : \mathcal{L} concatenated with itself 0 or more times

\mathcal{L}^R Reverse of \mathcal{L} : reverse of any string in \mathcal{L}

$\overline{\mathcal{L}}$ Complement of \mathcal{L} : all strings in $\Sigma_{\mathcal{L}}^*$ except the ones in \mathcal{L} ($\Sigma_{\mathcal{L}}^* - \mathcal{L}$)

$\mathcal{L}_1 \cup \mathcal{L}_2$ Union of languages \mathcal{L}_1 and \mathcal{L}_2 : strings that are in any of the languages

$\mathcal{L}_1 \cap \mathcal{L}_2$ Intersection of languages \mathcal{L}_1 and \mathcal{L}_2 : strings that are in both languages

Regular languages are closed under all of these operations.

Regular expressions

- Every regular language can be expressed by a regular expression, and every regular expressions defines a regular language
- A regular expression e defines a regular language $\mathcal{L}(e)$
- Relations between regular expressions and regular languages
 - $\mathcal{L}(\emptyset) = \emptyset$,
 - $\mathcal{L}(\epsilon) = \epsilon$,
 - $\mathcal{L}(ab) = \mathcal{L}(a)\mathcal{L}(b)$
 - $\mathcal{L}(a^*) = \mathcal{L}(a)^*$
 - $\mathcal{L}(a|b) = \mathcal{L}(a) \cup \mathcal{L}(b)$
(some author use the notation $a+b$,
we will use $a|b$ as in many practical
implementations)
- Note: no complement and intersection operators in common regex libraries

Regular expressions

and some extensions

- Kleene star (a^*), concatenation (ab) and union ($a|b$) are the basic operations
- Parentheses can be used to group the sub-expressions. Otherwise, the priority of the operators are as listed above: $a|bc^* = a|(b(c^*))$
- In practice some short-hand notations are common
 - $\cdot = (a_1| \dots |a_n)$,
for $\Sigma = \{a_1, \dots, a_n\}$
 - $a^+ = aa^*$
 - $[a-c] = (a|b|c)$
 - $[\wedge a-c] = \cdot - (a|b|c)$
 - $\backslash d = (0|1| \dots |8|9)$
 - ...
- And some non-regular extensions, like $(a^*)b\backslash 1$ (sometimes the term *regexp* is used for expressions with non-regular extensions)

Some properties of regular expressions

Useful identities for simplifying regular expressions

- $u | (v | w) = (u | v) | w$
- $u | v = v | u$
- $u(v | w) = uv | uw$
- $u | \emptyset = u$
- $u\epsilon = \epsilon u = u$
- $\emptyset u = \emptyset$
- $u(vw) = (uv)w$
- $\emptyset^* = \epsilon$
- $\epsilon^* = \epsilon$
- $(u^*)^* = u^*$
- $u | u = u$
- $(u | v)^* = (u^* | v^*)^*$
- $u^* | \epsilon = u^*$

Some properties of regular expressions

Useful identities for simplifying regular expressions

- $u | (v | w) = (u | v) | w$
- $u | v = v | u$
- $u(v | w) = uv | uw$
- $u | \emptyset = u$
- $u\epsilon = \epsilon u = u$
- $\emptyset u = \emptyset$
- $u(vw) = (uv)w$
- $\emptyset^* = \epsilon$
- $\epsilon^* = \epsilon$
- $(u^*)^* = u^*$
- $u | u = u$
- $(u | v)^* = (u^* | v^*)^*$
- $u^* | \epsilon = u^*$

An exercise

Simplify $a | ab^*$

Note: some of these are direct statements of Kleene algebra, others can be derived from them.

Some properties of regular expressions

Useful identities for simplifying regular expressions

- $u | (v | w) = (u | v) | w$
- $u | v = v | u$
- $u(v | w) = uv | uw$
- $u | \emptyset = u$
- $u\epsilon = \epsilon u = u$
- $\emptyset u = \emptyset$
- $u(vw) = (uv)w$
- $\emptyset^* = \epsilon$
- $\epsilon^* = \epsilon$
- $(u^*)^* = u^*$
- $u | u = u$
- $(u | v)^* = (u^* | v^*)^*$
- $u^* | \epsilon = u^*$

An exercise

Simplify $a | ab^*$

$$a | ab^* = a\epsilon | ab^*$$

Note: some of these are direct statements of Kleene algebra, others can be derived from them.

Some properties of regular expressions

Useful identities for simplifying regular expressions

- $u | (v | w) = (u | v) | w$
- $u | v = v | u$
- $u(v | w) = uv | uw$
- $u | \emptyset = u$
- $u\epsilon = \epsilon u = u$
- $\emptyset u = \emptyset$
- $u(vw) = (uv)w$
- $\emptyset^* = \epsilon$
- $\epsilon^* = \epsilon$
- $(u^*)^* = u^*$
- $u | u = u$
- $(u | v)^* = (u^* | v^*)^*$
- $u^* | \epsilon = u^*$

An exercise

Simplify $a | ab^*$

$$\begin{aligned} a | ab^* &= a\epsilon | ab^* \\ &= a(\epsilon | b^*) \end{aligned}$$

Note: some of these are direct statements of Kleene algebra, others can be derived from them.

Some properties of regular expressions

Useful identities for simplifying regular expressions

- $u|(v|w) = (u|v)|w$
- $u|v = v|u$
- $u(v|w) = uv|uw$
- $u|\emptyset = u$
- $u\epsilon = \epsilon u = u$
- $\emptyset u = \emptyset$
- $u(vw) = (uv)w$
- $\emptyset^* = \epsilon$
- $\epsilon^* = \epsilon$
- $(u^*)^* = u^*$
- $u|u = u$
- $(u|v)^* = (u^*|v^*)^*$
- $u^*|\epsilon = u^*$

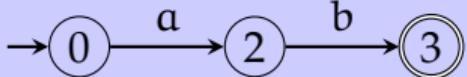
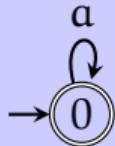
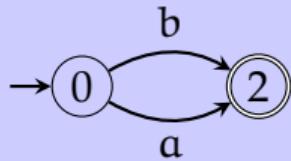
An exercise

Simplify $a|ab^*$

$$\begin{aligned}
 a|ab^* &= a\epsilon|ab^* \\
 &= a(\epsilon|b^*) \\
 &= ab^*
 \end{aligned}$$

Note: some of these are direct statements of Kleene algebra, others can be derived from them.

Converting regular expressions to FSA

 ab  a^*  $a \mid b$ 

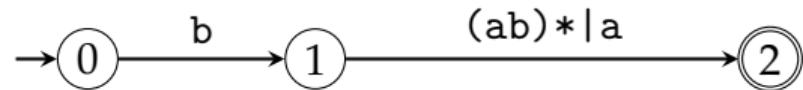
- For more complex expressions, one can replace the paths for individual symbols with corresponding automata
- Using ϵ transitions may ease the task
- The reverse conversion (from automata to regular expressions) is also easy:
 - identify the patterns on the left, collapse paths to single transitions with regular expressions

Exercise

convert $b((ab)^*|a)$ to an NFA

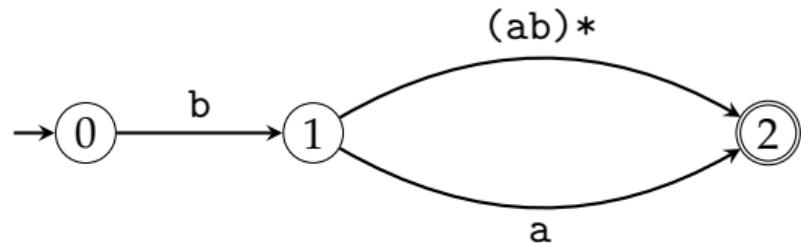
Exercise

convert $b((ab)^*|a)$ to an NFA



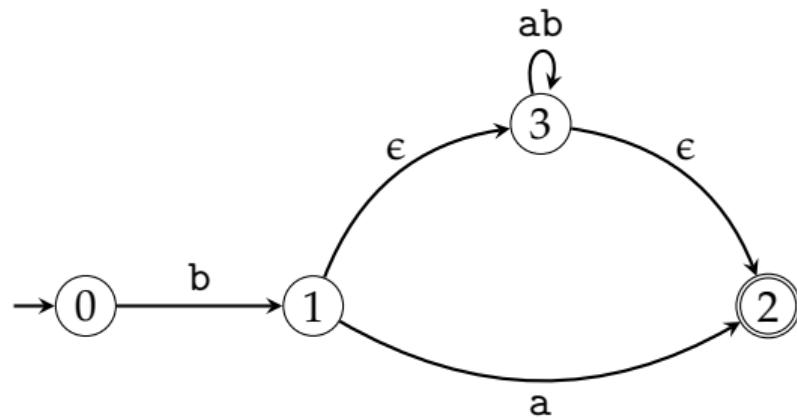
Exercise

convert $b((ab)^*|a)$ to an NFA



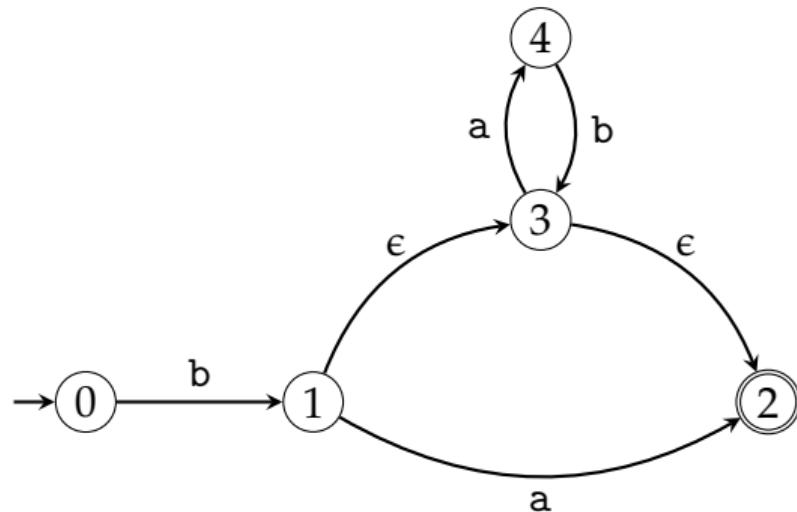
Exercise

convert $b((ab)^*|a)$ to an NFA

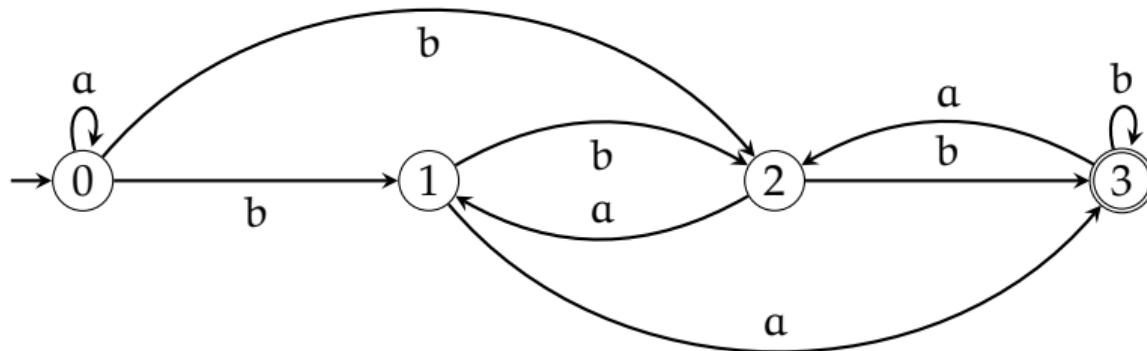


Exercise

convert $b((ab)^*|a)$ to an NFA

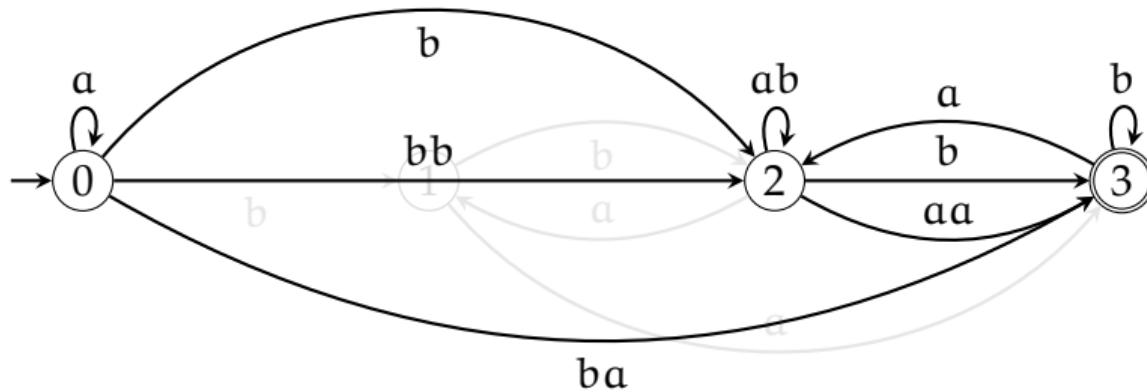


Converting FSA to regular expressions



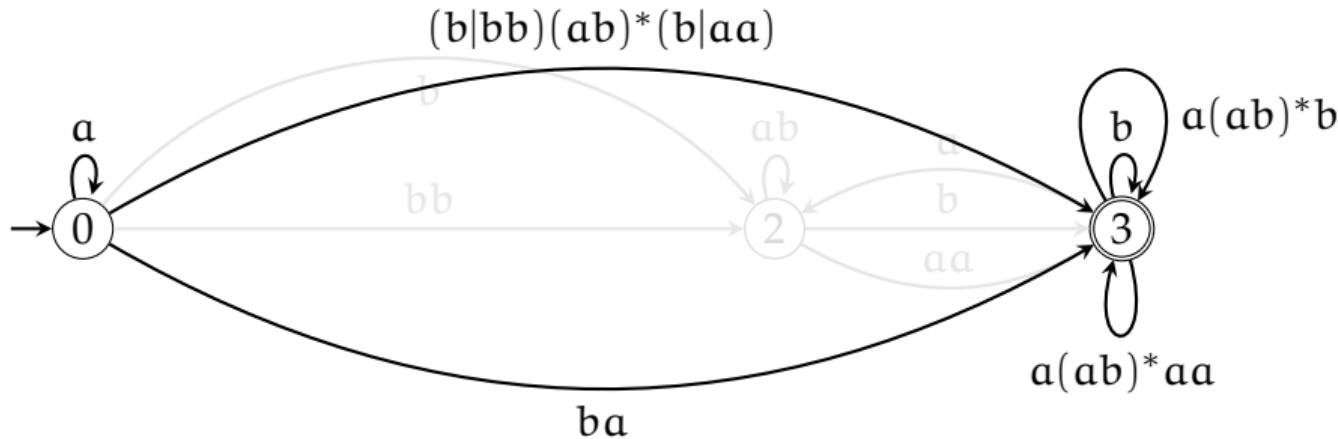
- The general idea: remove (intermediate) states, replacing edge labels with regular expressions

Converting FSA to regular expressions



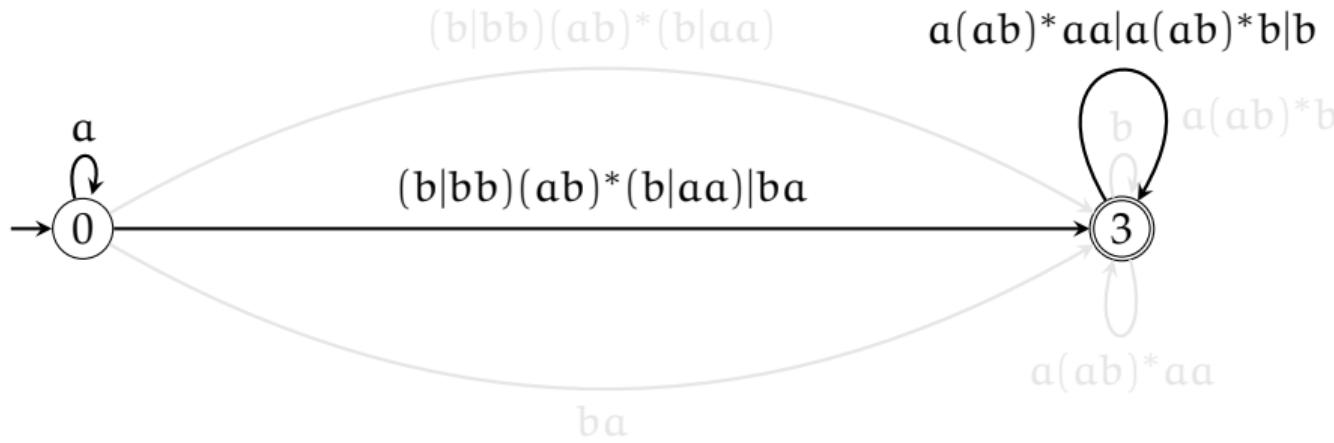
- The general idea: remove (intermediate) states, replacing edge labels with regular expressions

Converting FSA to regular expressions



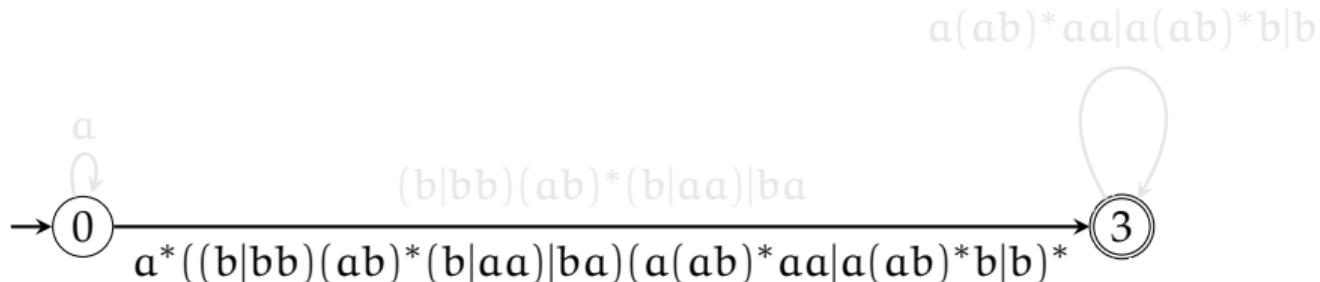
- The general idea: remove (intermediate) states, replacing edge labels with regular expressions

Converting FSA to regular expressions



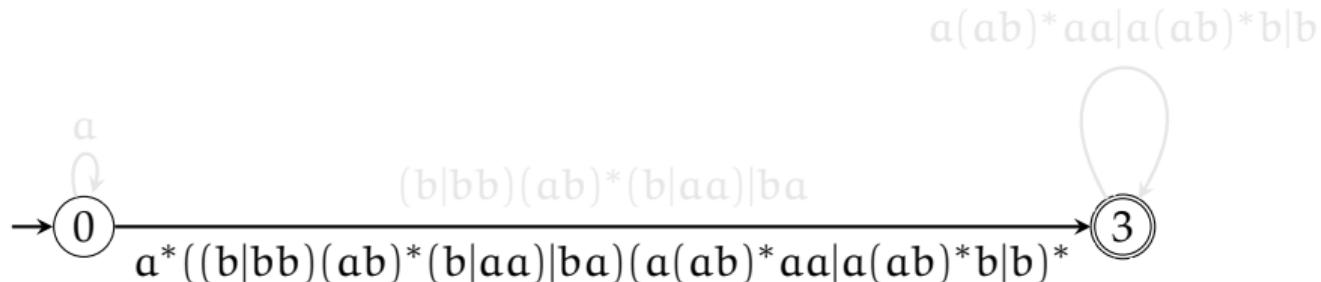
- The general idea: remove (intermediate) states, replacing edge labels with regular expressions

Converting FSA to regular expressions



- The general idea: remove (intermediate) states, replacing edge labels with regular expressions

Converting FSA to regular expressions



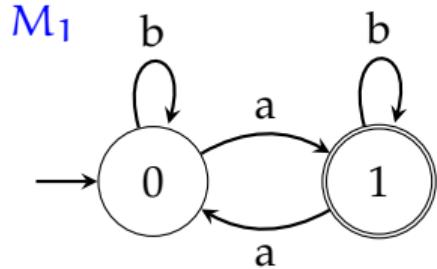
- The general idea: remove (intermediate) states, replacing edge labels with regular expressions

An exercise: simplify the resulting regular expressions

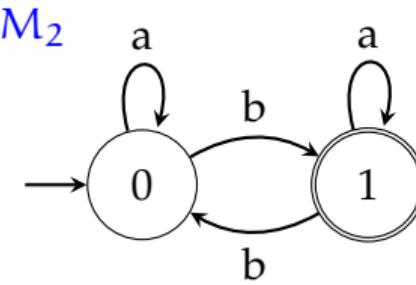
Two example FSA

what languages do they accept?

$$L_1 = \mathcal{L}(M_1)$$



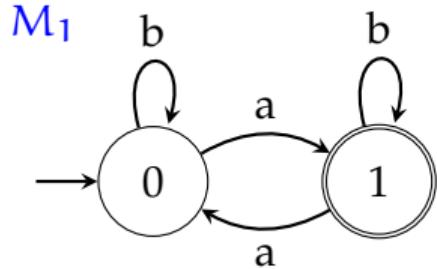
$$L_2 = \mathcal{L}(M_2)$$



Two example FSA

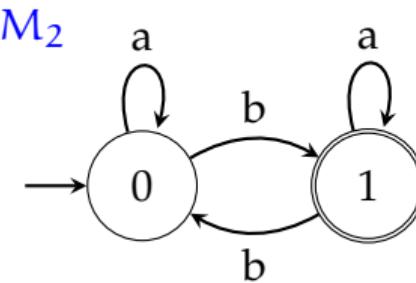
what languages do they accept?

$$L_1 = \mathcal{L}(M_1)$$



Odd number of a's over $\{a, b\}$.

$$L_2 = \mathcal{L}(M_2)$$

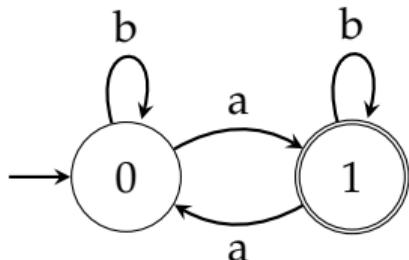


Odd number of b's over $\{a, b\}$.

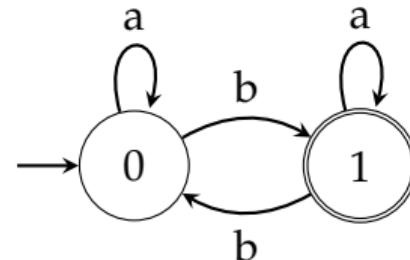
We will use these languages and automata for demonstration.

Concatenation

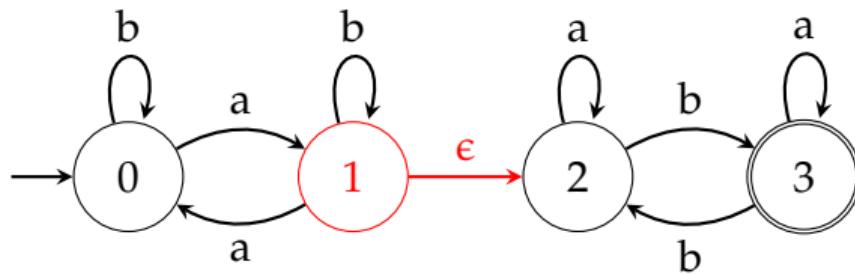
L_1



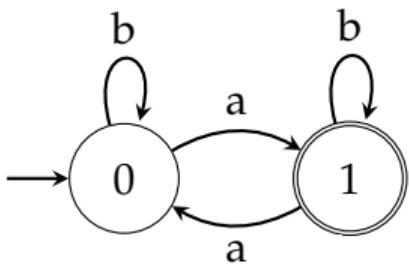
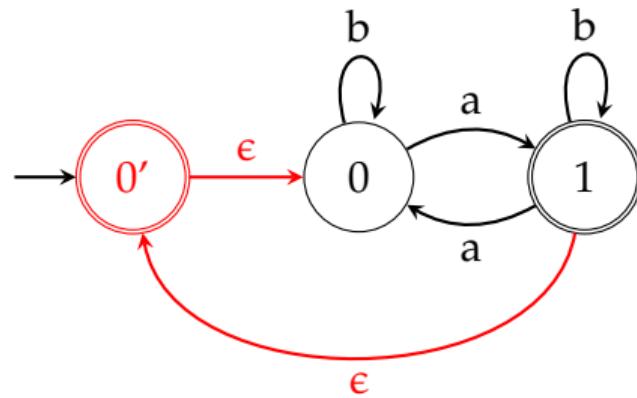
L_2



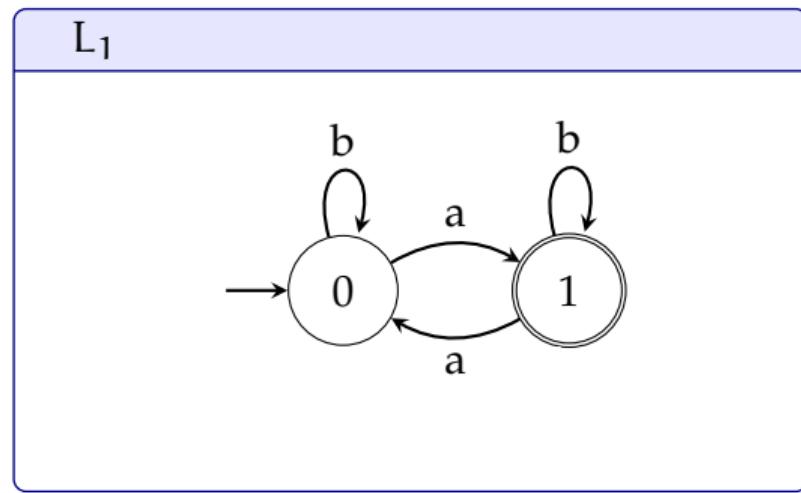
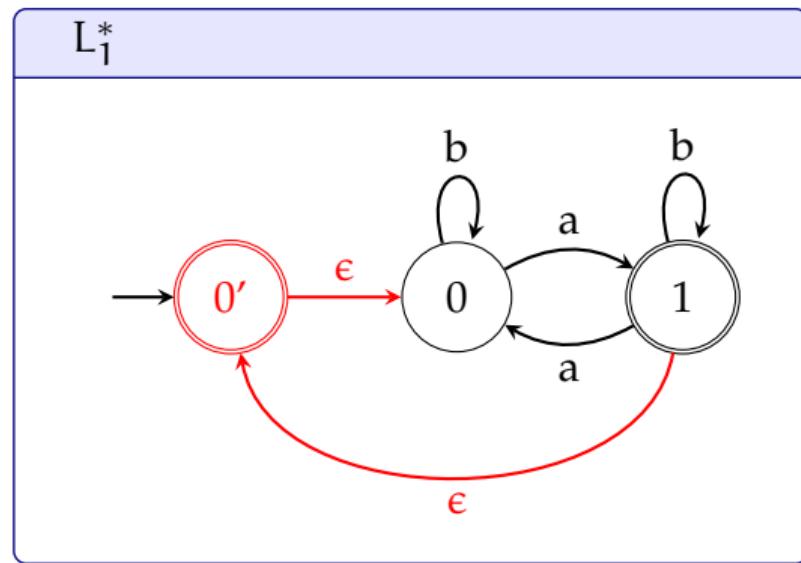
$L_1 L_2$



Kleene star

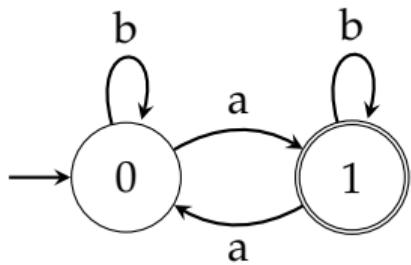
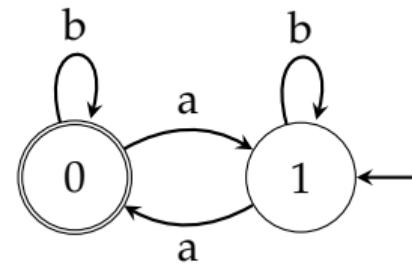
 L_1  L_1^* 

Kleene star

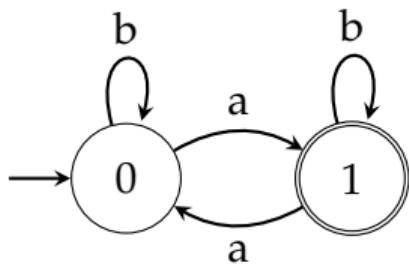
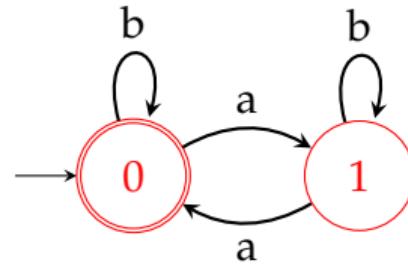


- What if there were more than one accepting states?

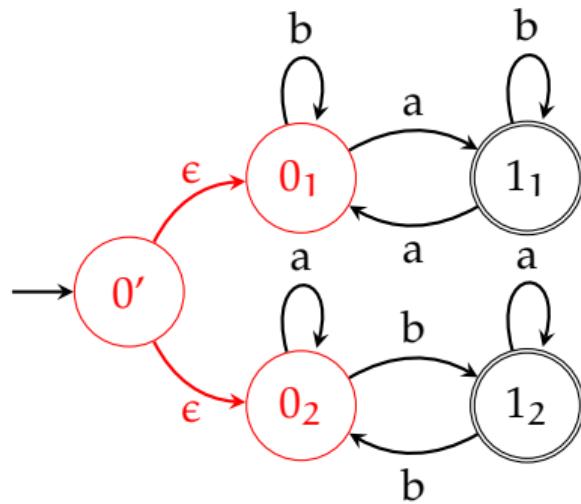
Reversal

 L_1  L_1^R 

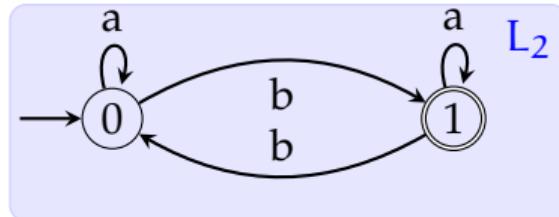
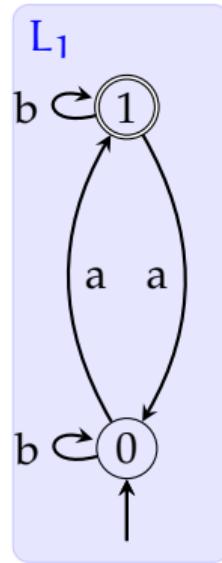
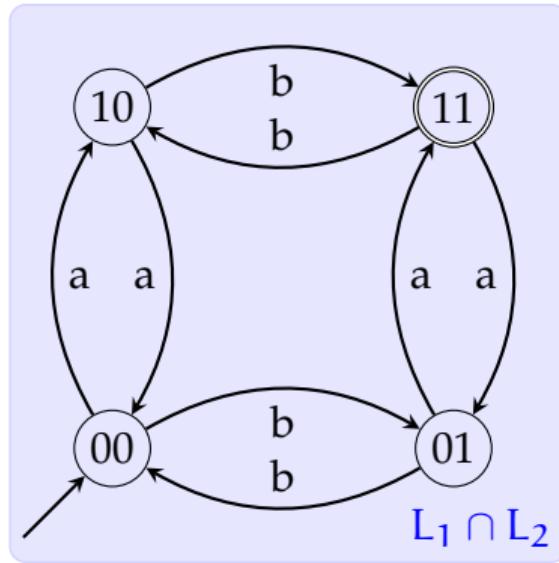
Complement

 L_1  $\overline{L_1}$ 

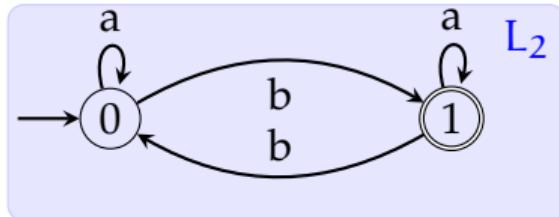
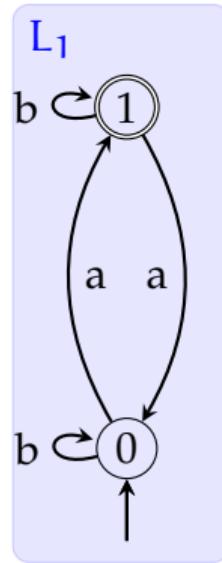
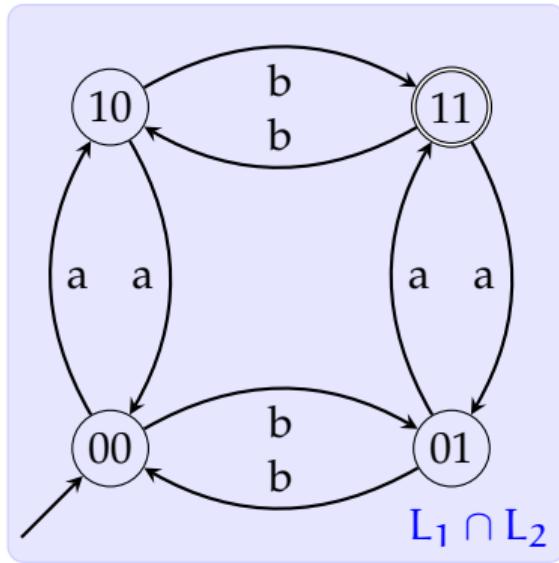
Union

 $L_1 \cup L_2$ 

Intersection



Intersection



...or

$$L_1 \cap L_2 = \overline{\overline{L}_1} \cup \overline{\overline{L}_2}$$

Closure properties of regular languages

- Since results of all the operations we studied are FSA: Regular languages are closed under
 - Concatenation
 - Kleene star
 - Reversal
 - Complement
 - Union
 - Intersection

Wrapping up

- FSA and regular expressions express regular languages
- Regular languages and FSA are closed under
 - Concatenation
 - Kleene star
 - Complement
 - Reversal
 - Union
 - Intersection
- To prove a language is regular, it is sufficient to find a regular expression or FSA for it
- To prove a language is not regular, we can use pumping lemma (see Appendix)

Wrapping up

- FSA and regular expressions express regular languages
- Regular languages and FSA are closed under
 - Concatenation
 - Kleene star
 - Complement
 - Reversal
 - Union
 - Intersection
- To prove a language is regular, it is sufficient to find a regular expression or FSA for it
- To prove a language is not regular, we can use pumping lemma (see Appendix)

Next:

- FSTs

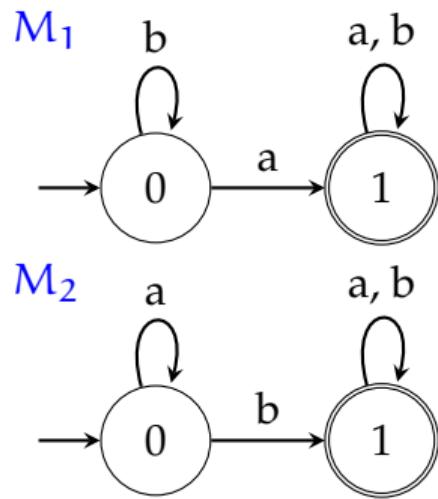
Acknowledgments, credits, references

- The classic reference for FSA, regular languages and regular grammars is Hopcroft and Ullman (1979) (there are recent editions).

 [Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman \(2007\). *Introduction to Automata Theory, Languages, and Computation*. 3rd. Pearson/Addison Wesley. ISBN: 9780321462251.](#)
 [Hopcroft, John E. and Jeffrey D. Ullman \(1979\). *Introduction to Automata Theory, Languages, and Computation*. Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley. ISBN: 9780201029888.](#)

Another exercise on intersection

Construct the intersection of the automata below (adapted from Hopcroft, Motwani, and Ullman (2007), Fig. 4.4)



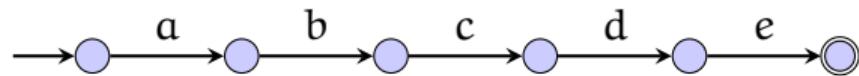
Is a language regular?

— or not

- To show that a language is regular, it is sufficient to find an FSA that recognizes it.
- Showing that a language is *not* regular is more involved
- We will study a method based on *pumping lemma*

Pumping lemma

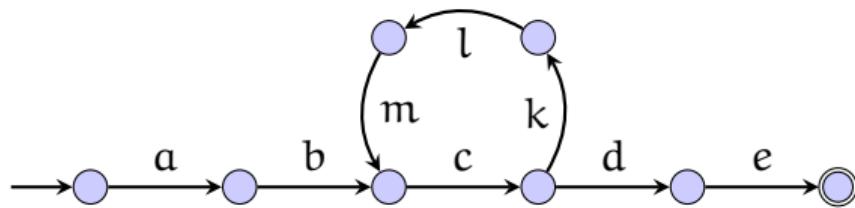
intuition



- What is the length of longest string generated by this FSA?

Pumping lemma

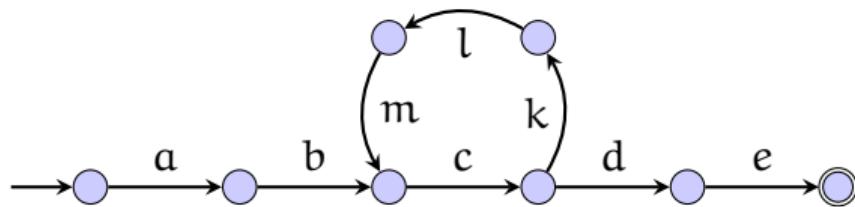
intuition



- What is the length of longest string generated by this FSA?

Pumping lemma

intuition



- What is the length of longest string generated by this FSA?
- Any FSA generating an infinite language has to have a loop (application of recursive rule(s) in the grammar)
- Part of every string longer than some number will include repetition of the same substring ('cklm' above)

Pumping lemma

definition

For every regular language L , there exist an integer p such that a string $x \in L$ can be factored as $x = uvw$,

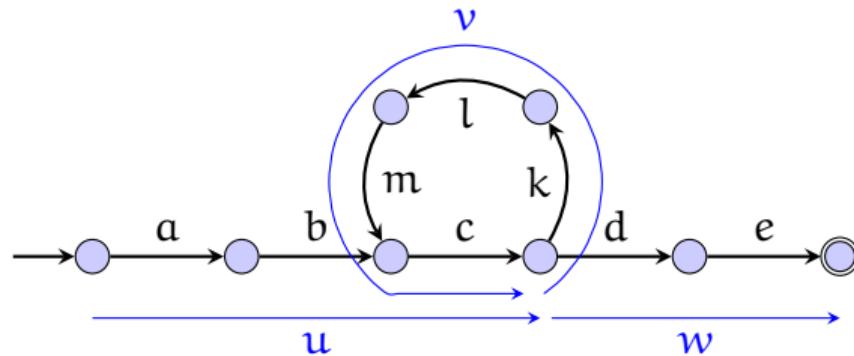
- $uv^i w \in L, \forall i \geq 0$
- $v \neq \epsilon$
- $|uv| \leq p$

Pumping lemma

definition

For every regular language L , there exist an integer p such that a string $x \in L$ can be factored as $x = uvw$,

- $uv^i w \in L, \forall i \geq 0$
- $v \neq \epsilon$
- $|uv| \leq p$



How to use pumping lemma

- We use pumping lemma to prove that a language is not regular
- Proof is by contradiction:
 - Assume the language is regular
 - Find a string x in the language, for all splits of $x = uvw$, at least one of the pumping lemma conditions does not hold
 - $uv^i w \in L (\forall i \geq 0)$
 - $v \neq \epsilon$
 - $|uv| \leq p$

Pumping lemma example

prove $L = a^n b^n$ is not regular

- Assume L is regular: there must be a p such that, if uvw is in the language
 1. $uv^i w \in L (\forall i \geq 0)$
 2. $v \neq \epsilon$
 3. $|uv| \leq p$
- Pick the string $a^p b^p$
- For the sake of example, assume $p = 5$, $x = aaaaabbbbb$
- Three different ways to split

