

FSA and regular languages

Data Structures and Algorithms for Computational Linguistics III
(ISCL-BA-07)

Cagin Coltekin
ccoltekin@cs.uni-tuebingen.de

University of Tuebingen
Seminar für Sprachwissenschaft

Winter Semester 2025/26

version: 16/03/2025 10:12

Regexp regular languages and automata Regular expressions Operations on FSA

Regular languages: some properties/operations

$\mathcal{L}_1 \mathcal{L}_2$ Concatenation of two languages \mathcal{L}_1 and \mathcal{L}_2 : any sentence of \mathcal{L}_1 followed by any sentence of \mathcal{L}_2

\mathcal{L}^* Kleene star of \mathcal{L} : \mathcal{L} concatenated with itself 0 or more times

\mathcal{L}^R Reverse of \mathcal{L} : reverse of any string in \mathcal{L}

\mathcal{L}^C Complement of \mathcal{L} : all strings in Σ^* except the ones in \mathcal{L} ($\Sigma^* - \mathcal{L}$)

$\mathcal{L}_1 \cup \mathcal{L}_2$ Union of languages \mathcal{L}_1 and \mathcal{L}_2 : strings that are in any of the languages

$\mathcal{L}_1 \cap \mathcal{L}_2$ Intersection of languages \mathcal{L}_1 and \mathcal{L}_2 : strings that are in both languages

Regular languages are closed under all of these operations.

© Coltekin, M8 / University of Tuebingen

Winter Semester 2025/26 2 / 17

Regexp regular languages and automata Regular expressions Operations on FSA

Regular expressions

and some extensions

• Kleene star (a^*), concatenation (ab) and union ($a|b$) are the basic operations

• Parentheses can be used to group the sub-expressions. Otherwise, the priority of the operators are as listed above: $a|bc^* = a|(b|c)^*$

• In practice some short-hand notations are common

$$\begin{aligned} \dots = & (a_1 \dots a_n), & \dots^* = & (a_1 \dots a_n)^* \\ \text{for } \Sigma = & (a_1, \dots, a_n) & \text{for } \Sigma = & \emptyset \\ a^* = & a a^* & a^* = & \emptyset \\ \dots = & (a^*)^* = (a|b)^* & \dots = & \dots \end{aligned}$$

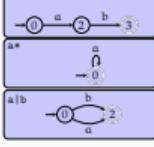
• And some non-regular extensions, like $(a^*)^*b\backslash 1$ (sometimes the term regexp is used for expressions with non-regular extensions)

© Coltekin, M8 / University of Tuebingen

Winter Semester 2025/26 4 / 17

Regexp regular languages and automata Regular expressions Operations on FSA

Converting regular expressions to FSA



- For more complex expressions, one can replace the paths for individual symbols with corresponding automata
- Using c transitions may ease the task
- The reverse conversion (from automata to regular expressions) is also easy:
 - identify the patterns on the left, collapse paths to single transitions with regular expressions

© Coltekin, M8 / University of Tuebingen

Winter Semester 2025/26 6 / 17

Regexp regular languages and automata Regular expressions Operations on FSA

Exercise

convert $b((ab)^*a)$ to an NFA

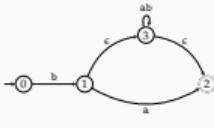
© Coltekin, M8 / University of Tuebingen

Winter Semester 2025/26 7 / 17

Regexp regular languages and automata Regular expressions Operations on FSA

Exercise

convert $b((ab)^*a)$ to an NFA



© Coltekin, M8 / University of Tuebingen

Winter Semester 2025/26 7 / 17

Three ways to define a regular language

- A language is regular if there is a regular grammar that generates/recognizes it
- A language is regular if there is an NFA that generates/recognizes it
- A language is regular if we can define a regular expression for the language

© Coltekin, M8 / University of Tuebingen

Winter Semester 2025/26 1 / 17

Regexp regular languages and automata Regular expressions Operations on FSA

Regular expressions

• Every regular language can be expressed by a regular expression, and every regular expression defines a regular language

• A regular expression a defines a regular language $\mathcal{L}(a)$

• Relations between regular expressions and regular languages

$$\begin{aligned} \mathcal{L}(\sigma) &= \emptyset, & \mathcal{L}(a|b) &= \mathcal{L}(a) \cup \mathcal{L}(b) \\ \mathcal{L}(c) &= \epsilon, & \text{(some author use the notation } a^0\text{,} \\ \mathcal{L}(ab) &= \mathcal{L}(a)\mathcal{L}(b) & \text{we will use } a|b \text{ as in many practical} \\ \mathcal{L}(a^*) &= \mathcal{L}(a)^* & \text{implementations)} \\ \text{where, } c &= \text{the empty string, } \emptyset \text{ is the language that accepts nothing (e.g.,} \\ \mathcal{L}^* &= \mathcal{L}^C \text{)} & \mathcal{L}^* &= \mathcal{L}^C \end{aligned}$$

• Note: no complement and intersection operators in common regex libraries

© Coltekin, M8 / University of Tuebingen

Winter Semester 2025/26 1 / 17

Regexp regular languages and automata Regular expressions Operations on FSA

Some properties of regular expressions

Useful identities for simplifying regular expressions

$$\begin{aligned} a|v|u &= (u|v|u) \\ a|v|v|u &= \\ a|v|u &= uv|u \\ a|v| \emptyset &= u \\ a|c - c &= u \\ a| \emptyset &= \emptyset \\ a|v|u &= (uv)|u \\ a|c - c &= \emptyset \\ a| \emptyset &= \emptyset \\ a|u|u &= u \\ a|(u|v)|u &= (u|v|u) \\ a|u|c &= u \\ a|c - c &= \emptyset \end{aligned}$$

An exercise

$$\begin{aligned} \text{Simplify } a|ab^* &= ac|ab^* \\ a|ab^* &= a(c|b^*) \\ &= ab^* \end{aligned}$$

Note: some of these are direct statements of Kleene algebras, others can be derived from them.

© Coltekin, M8 / University of Tuebingen

Winter Semester 2025/26 3 / 17

Regexp regular languages and automata Regular expressions Operations on FSA

Exercise

convert $b((ab)^*a)$ to an NFA

© Coltekin, M8 / University of Tuebingen

Winter Semester 2025/26 3 / 17

© Coltekin, M8 / University of Tuebingen

Winter Semester 2025/26 3 / 17

Regexp regular languages and automata Regular expressions Operations on FSA

Exercise

convert $b((ab)^*a)$ to an NFA

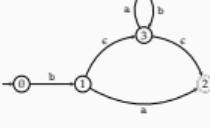
© Coltekin, M8 / University of Tuebingen

Winter Semester 2025/26 7 / 17

Regexp regular languages and automata Regular expressions Operations on FSA

Exercise

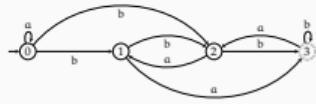
convert $b((ab)^*a)$ to an NFA



© Coltekin, M8 / University of Tuebingen

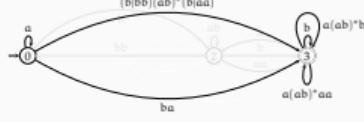
Winter Semester 2025/26 7 / 17

Converting FSA to regular expressions



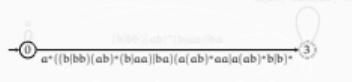
- The general idea: remove (intermediate) states, replacing edge labels with regular expressions

Converting FSA to regular expressions



- The general idea: remove (intermediate) states, replacing edge labels with regular expressions

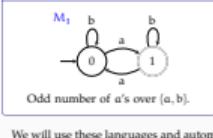
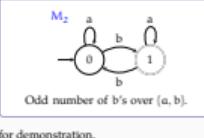
Converting FSA to regular expressions



- The general idea: remove (intermediate) states, replacing edge labels with regular expressions

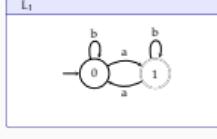
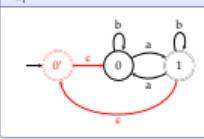
Two example FSA

what languages do they accept?



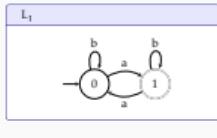
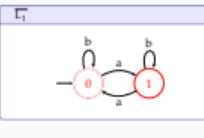
We will use these languages and automata for demonstration.

Kleene star

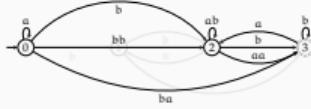


- What if there were more than one accepting states?

Complement

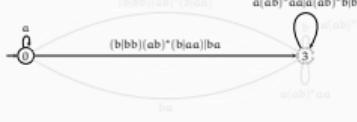


Converting FSA to regular expressions



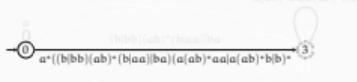
- The general idea: remove (intermediate) states, replacing edge labels with regular expressions

Converting FSA to regular expressions



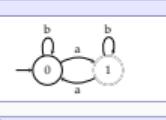
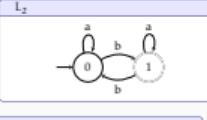
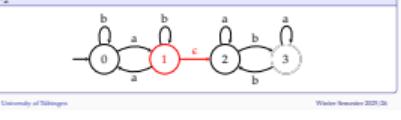
- The general idea: remove (intermediate) states, replacing edge labels with regular expressions

Converting FSA to regular expressions

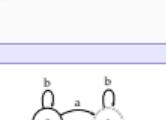
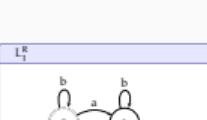


- The general idea: remove (intermediate) states, replacing edge labels with regular expressions

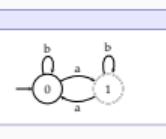
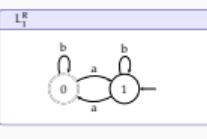
An exercise: simplify the resulting regular expressions



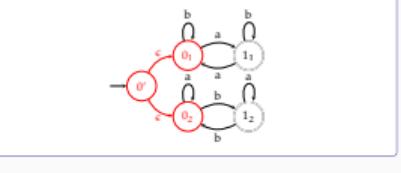
Concatenation



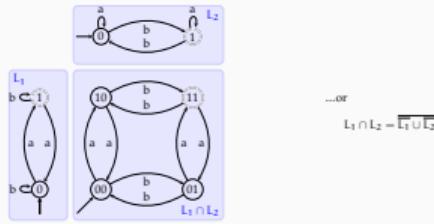
- What if there were more than one accepting states?



Union



Intersection



Wrapping up

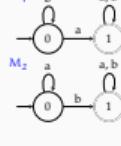
- PSA and regular expressions express regular languages
- Regular languages and PSA are closed under
 - Concatenation
 - Kleene star
 - Complement
 - Reversal
 - Union
 - Intersection
- To prove a language is regular, it is sufficient to find a regular expression or PSA for it
- To prove a language is not regular, we can use pumping lemma (see Appendix)

Next:

- PSTs

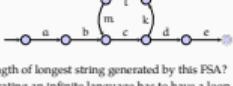
Another exercise on intersection

Construct the intersection of the automata below (adapted from Hopcroft, Motwani, and Ullman (2007), Fig. 4.4)



Pumping lemma

Intuition



- What is the length of longest string generated by this PSA?
- Any PSA generating an infinite language has to have a loop (application of recursive rule(s) in the grammar)
- Part of every string longer than some number will include repetition of the same substring ('cklm' above)

How to use pumping lemma

- We use pumping lemma to prove that a language is not regular
- Proof is by contradiction:
 - Assume the language is regular
 - Find a string x in the language, for all splits of $x = uvw$, at least one of the pumping lemma conditions does not hold
 - $uv^i w \notin L (\forall i \geq 0)$
 - $v \neq \emptyset$
 - $|uv| \leq p$

Closure properties of regular languages

- Since results of all the operations we studied are PSA: Regular languages are closed under
 - Concatenation
 - Kleene star
 - Reversal
 - Complement
 - Union
 - Intersection

Acknowledgments, credits, references

- The classic reference for PSA, regular languages and regular grammars is Hopcroft and Ullman (1979) (there are recent editions).

Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman (2007). *Introduction to Automata Theory, Languages, and Computation*. 3rd. Pearson/Addison Wesley. ISBN: 9780321462251.

Hopcroft, John E. and Jeffrey D. Ullman (1979). *Introduction to Automata Theory, Languages, and Computation*. Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley. ISBN: 9780201029888.

Is a language regular?

— or not

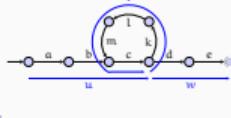
- To show that a language is regular, it is sufficient to find an PSA that recognizes it.
- Showing that a language is *not* regular is more involved
- We will study a method based on pumping lemma

Pumping lemma

definition

For every regular language L , there exist an integer p such that a string $x \in L$ can be factored as $x = uvw$,

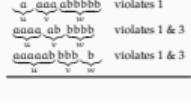
- $uv^i w \in L, \forall i \geq 0$
- $v \neq \emptyset$
- $|uv| \leq p$



Pumping lemma example

prove $L = a^n b^n$ is not regular

- Assume L is regular: there must be a p such that, if uvw is in the language
 - $uv^i w \in L (\forall i \geq 0)$
 - $v \neq \emptyset$
 - $|uv| \leq p$
- Pick the string $a^n b^n$
- For the sake of example, assume $p = 5$, $x = aaaaa bbbbb$
- Three different ways to split



Pumping lemma

definition

