

Minimization of DFA

Data Structures and Algorithms for Computational Linguistics III
(ISCL-BA-07)

Cağrı Çöltekin
ccoltekin@cs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

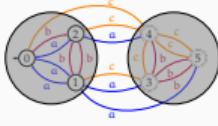
Winter Semester 2025/26

version: 05/05/2025/26 11:12

Introduction Minimization by partitioning: Brzozowski's algorithm

DFA minimization

- For any regular language, there is a unique *minimal DFA*
- By finding the minimal DFA, we can also prove equivalence (or not) of different PFA and the languages they recognize
- In general the idea is:
 - Throw away unreachable states (easy)
 - Merge equivalent states
- There are two well-known algorithms for minimization:
 - Hanf's algorithm: find and eliminate equivalent states by partitioning the set of states
 - Brzozowski's algorithm: "double reversal"


© C. Cöltekin, MII / University of Tübingen

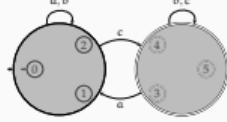
Winter Semester 2025/26 1 / 7

Introduction Minimization by partitioning: Brzozowski's algorithm

Finding equivalent states

Intuition

The edges leaving the group of nodes are identical.
Their *right languages* are the same.


© C. Cöltekin, MII / University of Tübingen

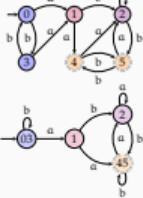
Winter Semester 2025/26 2 / 7

Introduction Minimization by partitioning: Brzozowski's algorithm

Finding equivalent states

Intuition

The edges leaving the group of nodes are identical.
Their *right languages* are the same.


© C. Cöltekin, MII / University of Tübingen

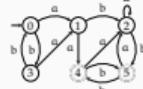
Winter Semester 2025/26 1 / 7

Introduction Minimization by partitioning: Brzozowski's algorithm

Minimization by partitioning

tabular version

- Accepting & non-accepting states form a partition
 $Q_1 = \{0, 1, 2, 3\}$, $Q_2 = \{4, 5\}$
- For any of the nodes in a set, if any symbol leads to different sets of nodes, split
- $Q_1 = \{0, 3\}$, $Q_2 = \{1\}$, $Q_3 = \{2\}$, $Q_4 = \{4, 5\}$
- Stop when we cannot split any of the sets, merge the indistinguishable states

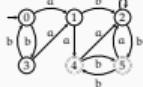

© C. Cöltekin, MII / University of Tübingen

Winter Semester 2025/26 3 / 7

Introduction Minimization by partitioning: Brzozowski's algorithm

Minimization by partitioning

tabular version


- Create a state-by-state table, mark distinguishable pairs: (q_1, q_2) such that $(\Delta(q_1, x), \Delta(q_2, x))$ is a distinguishable pair for any $x \in \Sigma$

1				
2				
3				
4	1	1	1	1
5	1	1	1	1

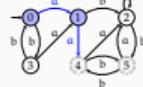
Introduction Minimization by partitioning: Brzozowski's algorithm

Minimization by partitioning

tabular version

- Create a state-by-state table, mark distinguishable pairs: (q_1, q_2) such that $(\Delta(q_1, x), \Delta(q_2, x))$ is a distinguishable pair for any $x \in \Sigma$

1				
2				
3				
4	1	1	1	1
5	1	1	1	1


© C. Cöltekin, MII / University of Tübingen

Winter Semester 2025/26 4 / 7

Introduction Minimization by partitioning: Brzozowski's algorithm

Minimization by partitioning

tabular version

- Create a state-by-state table, mark distinguishable pairs: (q_1, q_2) such that $(\Delta(q_1, x), \Delta(q_2, x))$ is a distinguishable pair for any $x \in \Sigma$

1				
2				
3				
4	1	1	1	1
5	1	1	1	1

Introduction Minimization by partitioning: Brzozowski's algorithm

Minimization by partitioning

tabular version

- Create a state-by-state table, mark distinguishable pairs: (q_1, q_2) such that $(\Delta(q_1, x), \Delta(q_2, x))$ is a distinguishable pair for any $x \in \Sigma$

1				
2				
3				
4	1	1	1	1
5	1	1	1	1

© C. Cöltekin, MII / University of Tübingen

Winter Semester 2025/26 5 / 7

Introduction Minimization by partitioning: Brzozowski's algorithm

Minimization by partitioning

tabular version

- Create a state-by-state table, mark distinguishable pairs: (q_1, q_2) such that $(\Delta(q_1, x), \Delta(q_2, x))$ is a distinguishable pair for any $x \in \Sigma$

1				
2				
3				
4	1	1	1	1
5	1	1	1	1

© C. Cöltekin, MII / University of Tübingen

Winter Semester 2025/26 6 / 7

Introduction Minimization by partitioning: Brzozowski's algorithm

Minimization by partitioning

tabular version

- Create a state-by-state table, mark distinguishable pairs: (q_1, q_2) such that $(\Delta(q_1, x), \Delta(q_2, x))$ is a distinguishable pair for any $x \in \Sigma$

1				
2				
3				
4	1	1	1	1
5	1	1	1	1

© C. Cöltekin, MII / University of Tübingen

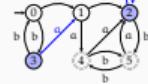
Winter Semester 2025/26 7 / 7

Introduction Minimization by partitioning: Brzozowski's algorithm

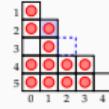
Minimization by partitioning

tabular version

- Create a state-by-state table, mark distinguishable pairs: (q_1, q_2) such that $(\Delta(q_1, x), \Delta(q_2, x))$ is a distinguishable pair for any $x \in \Sigma$

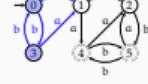

1				
2				
3				
4	1	1	1	1
5	1	1	1	1

© C. Cöltekin, MII / University of Tübingen

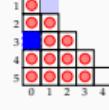

Winter Semester 2025/26 8 / 7

Minimization by partitioning

tabular version

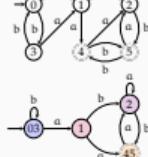


- Create a state-by-state table, mark distinguishable pairs: (q_1, q_2) such that $(\Delta(q_1, x), \Delta(q_2, x))$ is a distinguishable pair for any $x \in \Sigma$

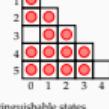


Minimization by partitioning

tabular version

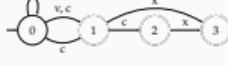


- Create a state-by-state table, mark distinguishable pairs: (q_1, q_2) such that $(\Delta(q_1, x), \Delta(q_2, x))$ is a distinguishable pair for any $x \in \Sigma$



Minimization by partitioning

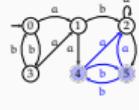
tabular version


- Create a state-by-state table, mark distinguishable pairs: (q_1, q_2) such that $(\Delta(q_1, x), \Delta(q_2, x))$ is a distinguishable pair for any $x \in \Sigma$

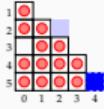
- Merge indistinguishable states
- The algorithm can be improved by choosing which cell to visit carefully

An exercise

find the minimum DFA for the automaton below

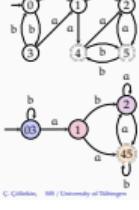

Acknowledgments, credits, references

Hopcroft, John E. and Jeffrey D. Ullman (1979). *Introduction to Automata Theory, Languages, and Computation*. Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley. asnc: 9780201029888.

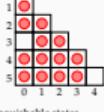

Jurafsky, Daniel and James H. Martin (2009). *Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition*. second edition. Pearson Prentice Hall. asnc: 978-0-13-504196-3.

Minimization by partitioning

tabular version

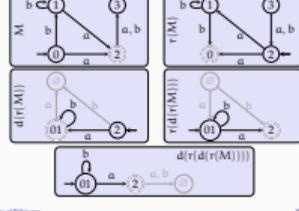


- Create a state-by-state table, mark distinguishable pairs: (q_1, q_2) such that $(\Delta(q_1, x), \Delta(q_2, x))$ is a distinguishable pair for any $x \in \Sigma$



Minimization by partitioning

tabular version



- Create a state-by-state table, mark distinguishable pairs: (q_1, q_2) such that $(\Delta(q_1, x), \Delta(q_2, x))$ is a distinguishable pair for any $x \in \Sigma$

- Merge indistinguishable states

Bemroński's algorithm

double reverse (r), determinize (d)

Minimization algorithms

final remarks

- There are many versions of the 'partitioning' algorithm. General idea is to form equivalence classes based on *right-language* of each state.
- Partitioning algorithm has versions with $O(n \log n)$ complexity
- 'Double reversal' algorithm has exponential worst-time complexity
- Double reversal algorithm can also be used with NFA (resulting in the minimal equivalent DFA – NFA minimization is intractable)
- In practice, there is no clear winner, different algorithms run faster on different input
- Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3), Jurafsky and Martin (2009, Ch. 2)

Next:

- FST
- PFA and regular languages

