

Finite state automata

Data Structures and Algorithms for Computational Linguistics III
(ISCL-BA-07)

Cagin Coltekin
ccoltekin@cs.uni-tuebingen.de

University of Tübingen
Sensur für Sprachwissenschaft

Winter Semester 2025/26

version: 09/09/2025 10:00:00 +02

Why study finite-state automata?

- Finite-state automata are efficient models of computation
- There are many applications
 - Electronic circuit design
 - Workflow management
 - Games
 - Pattern matching
 - ...
- But more importantly >)
 - Tokenization, stemming
 - Morphological analysis
 - Spell checking
 - Shallow parsing/chunking
 - ...

© Coltekin, 08 / University of Tübingen

Winter Semester 2025/26 1 / 30

Introduction Languages and automata (ISCL-BA-07)

Finite-state automata (FSA)

- A finite-state machine is in one of a finite-number of states in a given time
- The machine changes its state based on its input
- Every regular language is generated/recognized by an FSA
- Every FSA generates/recognizes a regular language
- Two flavors:
 - Deterministic finite automata (DFA)
 - Non-deterministic finite automata (NFA)

Note: the NFA is a superset of DFA.

© Coltekin, 08 / University of Tübingen

Winter Semester 2025/26 2 / 30

Introduction Languages and automata (ISCL-BA-07)

Languages and automata

- Recognizing strings from a language defined by a grammar is a fundamental question in computer science
- The efficiency of computation, and required properties of computing device depends on the grammar (and the language)
- A well-known hierarchy of grammars both in computer science and linguistics is the *Chomsky hierarchy*
- Each grammar in the Chomsky hierarchy corresponds to an abstract computing device (an automaton)
- The class of *regular grammars* are the class that corresponds to *finite state automata*

© Coltekin, 08 / University of Tübingen

Winter Semester 2025/26 4 / 30

Introduction Languages and automata (ISCL-BA-07)

Phrase structure grammars

- A phrase structure grammar is a generative device
- If a given string can be generated by the grammar, the string is in the language
- The grammar generates *all* and the *only* strings that are valid in the language
- A phrase structure grammar has the following components
 - Σ : a set of *terminal symbols*
 - N : a set of *non-terminal symbols*
 - $S \in N$: a special non-terminal, called the start symbol
 - R : a set of *rewrite rules* or *production rules* of the form:
$$\alpha \rightarrow \beta$$
which means that the sequence α can be rewritten as β (both α and β are sequences of terminal and non-terminal symbols)
 - The strings in the language of the grammar is those that can be derived from S using the rewrite operations

© Coltekin, 08 / University of Tübingen

Winter Semester 2025/26 6 / 30

Introduction Languages and automata (ISCL-BA-07)

Regular grammars: definition

A regular grammar is a tuple $G = (\Sigma, N, S, R)$ where

Σ is an alphabet of terminal symbols

N are a set of non-terminal symbols

S is a special 'start' symbol in N

R is a set of rewrite rules following one of the following patterns (A, B $\in N$, $\alpha, \beta \in \Sigma$, ϵ is the empty string)

Left regular

1. $A \rightarrow \alpha$
2. $A \rightarrow B\alpha$
3. $A \rightarrow \epsilon$

Right regular

1. $A \rightarrow \alpha$
2. $A \rightarrow \alpha B$
3. $A \rightarrow \epsilon$

© Coltekin, 08 / University of Tübingen

Winter Semester 2025/26 8 / 30

Introduction Languages and automata (ISCL-BA-07)

Three ways to define a regular language

- A language is regular if there is regular grammar that generates/recognizes it
- A language is regular if there is an FSA that generates/recognizes it
- A language is regular if we can define a regular expressions for the language

© Coltekin, 08 / University of Tübingen

Introduction Languages and automata (ISCL-BA-07)

DFA: formal definition

Formally, a deterministic finite state automaton, M , is a tuple $(\Sigma, Q, q_0, F, \Delta)$ with

- Σ is the alphabet, a finite set of symbols
- Q a finite set of states
- q_0 is the start state, $q_0 \in Q$
- F is the set of final states, $F \subseteq Q$
- Δ is a function that takes a state and a symbol in the alphabet, and returns another state ($\Delta : Q \times \Sigma \rightarrow Q$)

At any state and for any input,
a DFA has a single well-defined action to take.

© Coltekin, 08 / University of Tübingen

Winter Semester 2025/26 10 / 30

Introduction Languages and automata (ISCL-BA-07)

Winter Semester 2025/26 11 / 30

DFA: formal definition

an example

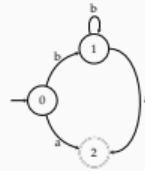
$$\Sigma = \{a, b\}$$

$$Q = \{q_0, q_1, q_2\}$$

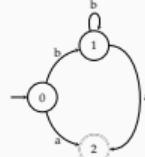
$$q_0 = q_0$$

$$F = \{q_1\}$$

$$\Delta = \{(q_0, a) \rightarrow q_2, (q_0, b) \rightarrow q_1, (q_1, a) \rightarrow q_2, (q_1, b) \rightarrow q_1\}$$

**DFA: the transition table**

transition table		
	symbol	
	a	b
→ 0	1	2
1	2	1
*2	∅	∅

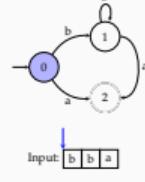


→ marks the start state

* marks the accepting state(s)

DFA recognition

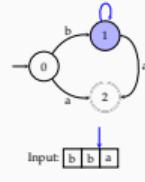
1. Start at q_0
2. Process an input symbol, move accordingly
3. Accept if in a final state at the end of the input



Input: [b] [b] [a]

DFA recognition

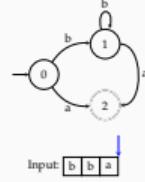
1. Start at q_0
2. Process an input symbol, move accordingly
3. Accept if in a final state at the end of the input



Input: [b] [b] [a]

DFA recognition

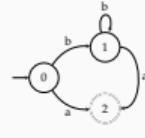
1. Start at q_0
2. Process an input symbol, move accordingly
3. Accept if in a final state at the end of the input



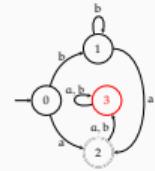
Input: [b] [b] [a]

A few questions

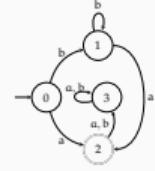
- * What is the language recognized by this DFA?
- * Can you draw a simpler DFA for the same language?
- * Draw a DFA recognizing strings with even number of 'a's over $\Sigma = \{a, b\}$



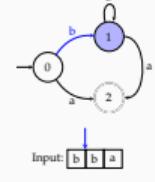
- * Is this PFA deterministic?
- * To make all transitions well-defined, we can add a sink (or error) state
- * For brevity, we skip the explicit error state
 - In that case, when we reach a dead end, recognition fails

**DFA: the transition table**

transition table		
	symbol	
	a	b
→ 0	1	2
1	2	1
*2	3	3
3	3	3

**DFA recognition**

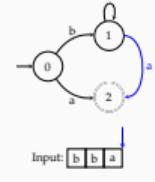
1. Start at q_0
2. Process an input symbol, move accordingly
3. Accept if in a final state at the end of the input



Input: [b] [b] [a]

DFA recognition

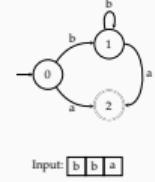
1. Start at q_0
2. Process an input symbol, move accordingly
3. Accept if in a final state at the end of the input



Input: [b] [b] [a]

DFA recognition

1. Start at q_0
2. Process an input symbol, move accordingly
3. Accept if in a final state at the end of the input

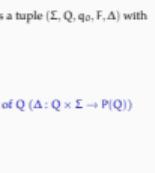


Input: [b] [b] [a]

Non-deterministic finite automata

Formal definition

- * What is the complexity of the algorithm?
- * How about inputs:
 - bbbb
 - aa



An example NFA



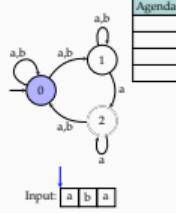
transition table	
state	symbol
0	a, b
1	a
2	a, b

- We have nondeterminism, e.g., if the first input is a, we need to choose between states 0 or 1
- Transition table cells have sets of states

Dealing with non-determinism

- Follow one of the links, store alternatives, and backtrack on failure
- Follow all options in parallel

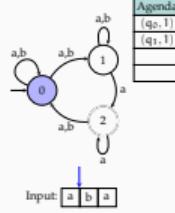
NFA recognition as search (with backtracking)



Input: [a b a]

- Start at q_0
- Take the next input, place all possible actions to an agenda
- Get the next action from the agenda, act
- At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda empty
Backtrack otherwise

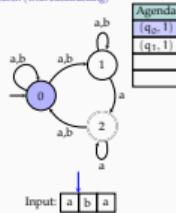
NFA recognition as search (with backtracking)



Input: [a b a]

- Start at q_0
- Take the next input, place all possible actions to an agenda
- Get the next action from the agenda, act
- At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda empty
Backtrack otherwise

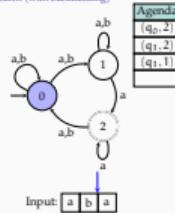
NFA recognition as search (with backtracking)



Input: [a b a]

- Start at q_0
- Take the next input, place all possible actions to an agenda
- Get the next action from the agenda, act
- At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda empty
Backtrack otherwise

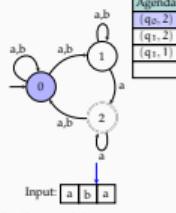
NFA recognition as search (with backtracking)



Input: [a b a]

- Start at q_0
- Take the next input, place all possible actions to an agenda
- Get the next action from the agenda, act
- At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda empty
Backtrack otherwise

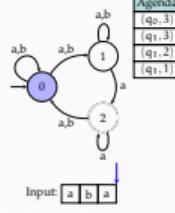
NFA recognition as search (with backtracking)



Input: [a b a]

- Start at q_0
- Take the next input, place all possible actions to an agenda
- Get the next action from the agenda, act
- At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda empty
Backtrack otherwise

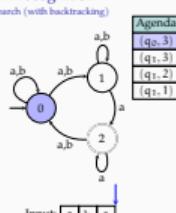
NFA recognition as search (with backtracking)



Input: [a b a]

- Start at q_0
- Take the next input, place all possible actions to an agenda
- Get the next action from the agenda, act
- At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda empty
Backtrack otherwise

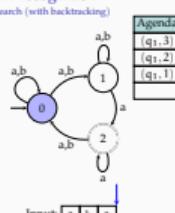
NFA recognition as search (with backtracking)



Input: [a b a]

- Start at q_0
- Take the next input, place all possible actions to an agenda
- Get the next action from the agenda, act
- At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda empty
Backtrack otherwise

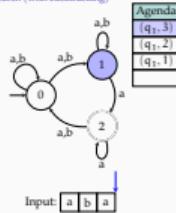
NFA recognition as search (with backtracking)



Input: [a b a]

- Start at q_0
- Take the next input, place all possible actions to an agenda
- Get the next action from the agenda, act
- At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda empty
Backtrack otherwise

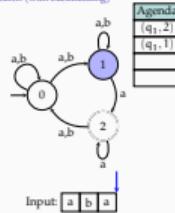
NFA recognition as search (with backtracking)



Input: [a b a]

- Start at q_0
- Take the next input, place all possible actions to an agenda
- Get the next action from the agenda, act
- At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda empty
Backtrack otherwise

NFA recognition as search (with backtracking)

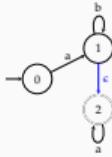
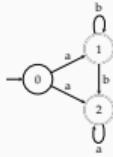


Input: [a b a]

- Start at q_0
- Take the next input, place all possible actions to an agenda
- Get the next action from the agenda, act
- At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda empty
Backtrack otherwise

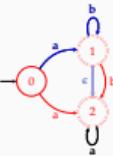
One more complication: ϵ transitions

- An extension of NFA, ϵ -NFA, allows moving without consuming an input symbol, indicated by an ϵ -transition (sometimes called a λ -transition)
- Any ϵ -NFA can be converted to an NFA



ϵ removal

- Intuition: if $0 \xrightarrow{a} 1 \xrightarrow{a} 2$, then $0 \xrightarrow{a} 2$.
- We start with finding the ϵ -closure of all states
 - ϵ -closure(q_0) = $\{q_0\}$
 - ϵ -closure(q_1) = $\{q_1, q_2\}$
 - ϵ -closure(q_2) = $\{q_2\}$
- For each incoming arc (q_1, q_2) with label ℓ to a node q_1
 - add a new arc (q_1, q_2) with label ℓ to all $q_2 \in \epsilon\text{-closure}(q_1)$
 - remove all ϵ transitions (q_1, q_2) for all $q_2 \in \epsilon\text{-closure}(q_1)$
- ϵ -transitions from the initial state, and to/from the accepting states need further attention (next slide)
- Remove useless states, if any



NFA-DFA equivalence

- The language recognized by every NFA is recognized by some DFA
- The set of DFA is a subset of the set of NFA (a DFA is also an NFA)
- The same is true for ϵ -NFA
- All recognize/generate regular languages
- NFA can automatically be converted to the equivalent DFA

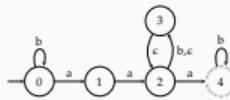
Next:

- FSA determination, minimization
- Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3) (and its successive editions), Jurafsky and Martin (2009, Ch. 2)

Next:

- FSA determination, minimization
- Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3) (and its successive editions), Jurafsky and Martin (2009, Ch. 2)

ϵ -transitions need attention

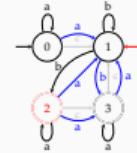


- How does the (depth-first) NFA recognition algorithm we described earlier work on this automaton?
- Can we do without ϵ transitions?

ϵ removal

another (less trivial) example

- Compute the ϵ -closure:
 - ϵ -closure(q_0) = $\{q_0, q_1\}$
 - ϵ -closure(q_1) = $\{q_1\}$
 - ϵ -closure(q_2) = $\{q_2, q_3, q_4\}$
 - ϵ -closure(q_3) = $\{q_3, q_1\}$
- For each incoming arc (q_1, q_2) with label ℓ to a node q_1
 - add a new arc (q_1, q_2) with label ℓ to all $q_2 \in \epsilon\text{-closure}(q_1)$
 - remove all ϵ transitions (q_1, q_2) for all $q_2 \in \epsilon\text{-closure}(q_1)$
- For the initial state if q_0 , mark all $q_2 \in \epsilon\text{-closure}(q_0)$ as initial
- For each q_1 , if $q_1 \in \epsilon\text{-closure}(q_1)$ is accepting, mark q_1 accepting



Why do we use an NFA then?

- NFA (or ϵ -NFA) are often easier to construct
 - Intuitive for humans (cf. earlier exercise)
 - Some representations are easy to convert to NFA rather than DFA, e.g., regular expressions
- NFA may require less memory (fewer states)

A quick exercise – and a not-so-quick one

1. Construct (draw) an NFA for the language over $\Sigma = \{a, b\}$, such that 4th symbol from the end is a



2. Construct a DFA for the same language

Acknowledgments, credits, references

• Hopcroft, John E. and Jeffrey D. Ullman (1979). *Introduction to Automata Theory, Languages, and Computation*. Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley. isbn: 9780201029988.

• Jurafsky, Daniel and James H. Martin (2009). *Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition*, second edition. Pearson Prentice Hall. isbn: 978-0-13-504196-3.