Why study finite-state automata?
Finite state automata ’

Data Structures and Algorithms for Computational Linguistics IIl
a 7)

« There are many applications
~ Electronic ircuit design
~ Workflow management
~ Games.

- Pattern matching

Gagn Goltekin
ccoltakindsfs. uni-tuebingen.do

Snin o Srachvihat But more importanly 1)
~ Tokenization, stemming

. Morphologicalanalyss
Winter Semester 202526 =
= Shallow parsing/chunking

Finite-state automata (FSA) FSA as a graph

s in one of a inite ina given time

+ The machine changes its state based on s input

« Every regular language is generated!/recognized by an FSA + AnFSAsa directed graph

+ Every FSA generates/recognizes a regular language + States are represented as nodes

+ Two flavors: + Transitions ae Iabeled edges

= Determinisic nte automata (DFA) + One ofthe states s the il state

)
~ Nonv-determiistc fniteautomata (NFA)

+ Some states are accepting states.
Note: the NFA is a superset of DFA.

accepting state

Languages and automata How to describe a language?
Forma grommars
+ Recognizing strings from a language defined by a grammar is a fundamental
question in computer cience
o Aformal grammar i fnite specifcaton of a (formal) language.
e e S - We srings fora wecan
+ Awell-known hierarchy of grammars both in computer scence and (conceivably)lstal strings
Tingulstcs s the Chomsk ey + How to definean ininie language?
« Each grammar in the Chomsky hierarchy corresponds to an abstract o ‘T.’:‘;i‘;:‘“‘"; -bas baca bages,..) formal ncught?
comptingdeic an sutormator) T oo mere et o deing s
1o fnite state
automata

Phrase structure grammars Chomsky hierarchy and automata
« A phrase structure grammar is generative device
ted by th h the language Grammar class Roles Automata
ettt e e S o o e e Unrestrcted grammars ap Taring machines
T e Contextsensitive grammars a Apayp Linearbounded automata
N A set of nor-termina symbo
N A el m s e thestr sy Contextfres grammars Ao Tushdown automata

R A setof rewrie rales or production rules of the form:

a0 Regular grammars Aa | Aoa Fanite stale automata
A | A=Ba

which means that the sequence & can be rewritten as (both ocand § are

sequences ofterminal and nor-terminal symbols)

« The st L
using the rewlte operations

Regular grammars: definition Regular languages: some properties/operations
A regular grammar is a tuple G = (£, N, 5, R) where
- is an alphabet ofterminal symbols 2 G £ and €37 any s £ followed by
N are a set of non-terminal symbols any sentence of £
e Yo Kleene sta of £: £ concatenated with ifself 0 or mre times

R isa set of rewrite rulesfollowing one of the following patterns (A, € N, * Reverse of £: reverse ofany string in £

€ L, ¢ is the empty string Complement of £: all strings in £ except the ones in £ (£ — £)

£1U£, Union of languages £ and £5: strings that are in any of the languages

Left reglar] [Right regular 211122 Intersecton of anguages £, and £ srings thatare in both languages
LA LA-a
oAb D Aan Regular lnguages are closed under al of these operations.
s Ae A
‘Three ways to define a regular language DFA: formal definition
Formally, a deterministic finite state automaton, M, is a tuple (£, Q. do, F. A) with
£ s the alphabet, a finite setof symbols
Q afinite set of states
oA 5 ao s the startsate, o € Q
A FSA T is the set of hn«l states, F C Q
oA can define language A isa function that tak {a symbol n the alphabet, and re

another state (4:Q x £ Q)

t any state and for any i
aDEA b single well-defined action to take.

DFA: formal definition Another note on DFA

an example errororsink sate

+ Isthis FSA deterministic?

+ To make all transitions well-defined,
we can add a sink (or error) state

« For brevity, we skip the explicit error
state

a2 (qo.b)

hat case, when we reach a dead
(ane)=az (ab) = a)

~Ind
end, recognition fails

DFA: the transition table DFA: the transition table

2 w7z 1
£ 12 1 £ 12
¥ 2e o F 23 3

53 3

— marks the start state
* marks the accepting state(s)

— marks the start state
* marks the accepting state(s)

DFA recognition DFA recognition
1 Startat gy 1. strtat qo
2. Process an input symbol, move 2. Process an input symbol, move
accordingly b accordingly
3. Acceptif ina final state at the end of 0 3. Acceptifin afinal sate at the end of
e toput () e
a
DFA recognition DFA recognition
1 Sartat gy 1. Startat g0
2. Process an input symbol, move 2. Process an input symbol, move
accordingly accondingly
3. Acceptif n a final state at the end of Acceptifin a finalstate at the end of
the input the input

DFA recognition DFA recognition
1. Sartat qo 1 surtat g0

2. Process an input symbol, move 2. Process an input symbol, move
accordingly accordingly

3. Accept if in a final state at the end of Acceptifin final state at the end of
the input the input

« Whatis the complexity of the
algorithm?

How about inputs:
ey

|
Input e Input

A few questions Non-deterministic finite automata
Formal defniton

« Whatis the language recognized by A non-deterministic finite state automaton, M, is a tuple (£, Q, o, , 4) with
s FSA?

£ is the alphabet, finite set of symbols
Q afinite set of states

qo s the start state, o € Q
F s the set of final states, F
4 isa function from (Q, £) to P(Q), power setof Q (4: Q x £ — P(Q))

+ Can you draw a simpler DFA for the
same language?

+ Draw a DFA recognizing strings.
with even number of ‘a’s over

I=(ab]

An example NFA

« We have nondeterminism, e.g. if the first input is a, we need to choose.
between states 0 or 1
« Transition table cells have sefs of states.

Dealing with non-determinism

+ Follow one of the links, store alternatives, and backtrack on failure
« Follow all options in parallel

NFA recognition NFA recognition
st (whlh eckocking) s ssrch (i becrcing)
1. Startat g 1 Sartat o
2. Take the next nput, place all 2 Tkethe nestnput, place al
possble actions toan agenda possible actons toan agenda
Get the next action from the agenda, 3. Get the next action from the agenda,
act at
4. Attheend of nput 5. Atthe end of input
Accpt I an aceptng stte Accpt i an accepting sate
Reec ot mseceping ot e agena Reect not i acceping sate & genc
empty al mpty
Backirack ofhorvie Backtrack oherwioe
inpusa[b]a]
NFA recognition NFA recognition
s earch (vt Cckracking) asarch (it acrocing)
1. Startatao 1. Sartat o
2 Take the next nput,place all 2. Take the next input, place all
possble actions toan agenda possible actons toan agenda
3. Get the next action from the agenda, 3. Get the next ction from the agenda,
act
4. Atthe end of input 4. Atthe end of nput
Accept I nan acoeptng sate Acept fnan acceptng state
Reeet o inaceeping e & agenla Reft ot inaccepuing date e agenca
ey cpty
Backiack therise Backtrck oherwise
input[a [oa]
NFA recognition NFA recognition
s search (i Bckracking) e (it ckimcin
L. Strtat o 1 Startat o
2. Take thenext npu, place all 2. Take the next input, place all
possible actions toan agenda possible actons toan agenda
3. Get the next action from the agenda, 3. Gt the next acton from the agenda,
act act
4. Atthe end of mput 4. Atthe end of mput
Accept fnan acceptng st Accept i an acceping sate
Reket o inaceeping st & agenla Refst not naeveping sae & agenda
empty empty
Backiack otherwise Backtrck oerwise
nput; ﬂllﬂ input[aTb]a]
NFA recognition NFA recognition
ab ab
L Startat g 1. Startatqo
2. Take the next nput, placeall 2. Take the next input, place all
posible actions to an agenda possible actons toan agenda
3. Get the next action from the agenda, 3. Get the next ction from the agenda,
act
4. Attheend of mput 4. Atthe end of input
Accep ifin an accepting state Accept 1 an accepting
Reet Rk Inacceping st & agena R i g e g
empty
Backiack otherwise | Backirck oherwise
nput:
NFA recognition NFA recognition
1 Startatq 1. Startat g
2. Take the next nput, placeall 2. Take the next input, place all
posible actions to ah agend possible actons toan agenda
3. Get the next action from the agenda, 3. Gt the next acton from the agenda,
act
4. Atthe end of nput 4. Atthe end of nput
Acept ifnam accpting s Accept itinan acepting state
R g e c genda Rejet ot inaccepung sate e agenca
enp
| Backiack atpenwise Backirck otherwise
e

NFA recognition

assearch (with backtracking)

1. Surtat go
2. Take the next input, place all
possible actions to an agenda

4. Atthe end of input
Accept ifin an accepting stat
Reject notin accepting sate & agenda
empty

Backtrack otherwise

tmput[3 o 3]

3. Get the next action from the agenda,
act

NFA recognition

a8 search (with backiracking)

1. Srtatgo

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act

4 Atthe end of input

Accept ifin an accepting state

Reject notin accepting state & agenda
empty

y
Backtrack otherwise

put (a6]

NFA recognition NFA recognition
s sereh (it uckracking) o sarch (with backracking)
ab ab
1 Sartat as 1. Strtat go
ap ab 2. Take the next input, place all ab ab 2. Take the next input, place all
possible actons to an g possble actions to an agenda
3. Get the next action from the agenda, 3. Get the next action from the agenda,
p act - act
a2 4. Atthe end of input 52 4. Atthe end of input
w Accept if in an accepting state Y \O‘ Accept ifin an accepting state
Refect ot n acepting stae & agenda Refct notn accepting stae & agenda
empty al mpty
Backtrack afwewise Backtrack oherwioe

NFA recognition as search NFA recognition
cummary panilel veson
1. Startatqo
2. Take the next input, markall possible
+ Worsttime complexity is exponential nextstates
~ Complexiy s worse if we want o enumerae alldervations 3. 1 an accepting state fs marked a the end
+ We used a stack as agends, performing a depth-first search of the input,accept
+ A queue would resultin breadth-frst search
+ Ifwe have a reasonable heuristc A* search may be an option
+ Machine also fastor
NFA recognition NFA recognition
paalel verson panlel vesion
1 Surtatqy 1 Startatqo
2. Take the next input, mark all possible 2. Take the next input, markall possible
nextstates nextstates

If an accepting state is marked at the end
of the input, accept

1 an accepting state is marked at the end
of the input, accept

NFA recognition NFA recognition
paale verson panlel vesion
1. Startat 4o 1. Startat qo
2. Take the next input, mark all possible 2. Take the next input, markall possible
next states next states
B

If an accepting state is marked at the end
of the input, accept

1 an accepting state is marked at the end
of the input, accept

put (35 [a]p]

NFA recognition
paale verson
1 Surtat g
2. Take the next input, mark all possible
nextstates

If an accepting state is marked at the end
of the input, accept

Note: the process is deterministic, and
finite:state.

input:[a[b]a]b]

An exercise

Constructan NEA a3 DFA o theanguge over £
tences end with

@, b} where all sen-

ab

0
-
:

DFA:

One more complication: € transitions

symbol, indicated by an e-transition (sometimes called a A-transition)
+ Any c-NFA can be converted to an NFA

e-transitions need attention

* How doe the (depfrst) NFA recognition lgorithm e described clir
work on this automator

B

€ removal € removal
+ itttion: . OO0, then D, I
+ We start with finding the e-closure of all states R OCTEIN DO E
osure(as) 0)
~ e-closure(an) [T CClonne(an) = @ s)
St B e
« For each incoming arc (qs, 4) with label ¢ to a rode gy " « For each incoming are {(qy, qs) to each node g
id a new arc (g;. qi) with label ¢, for all ~ add (g, qi) forall qi € e Ak\sme\ﬂ
e wsure(;) 2 - remove all ¢(g;, g) for all losure(q;
+ e-transitions from the initial state, and to/from the x osure(qo) as inita
accepting states need further attention (next slide) « For each gy, if ; € e-closure(;) is accepting,
+ Remove useless states, if any mark q; accepting

NFA-DFA equivalence

- The language recognized by every NEA is recognized by some DFA
« The set of DFA is a subset of the set of NFA (a DFA is also an NFA)
« The same istrue for ¢-NFA

« All recognize/generate regular languages

« NFA can automatically be converted to the equivalent DFA

Why do we use an NFA then?
« NFA (or €-NFA) ae often casier to construct
- Intuitive for humans (cf. earlir xercise)

her than DF I
" expressions

« NFA may require less memory (fewer states)

(A quick sxrcie = and 3 notso-quick one

1. Construct (draw) an NFA for the language over £ =
symbol from the end is an
ab

g O EEEE

{a, b}, such that 4th.

2. Construct a DFA for the same language

Summary

« FSA are fficient tools with many applications
« FSA have two flavors; DFA, NFA (or maybe three: ¢-NFA)
+ DEA recognition s linear, recogition with NFA may require exponential time.
+ Reading suggestion: Hoperoft and Ullman (1979, Ch. 263) (and itssuccessive
editions), Jurafsky and Martin (2009, Ch. 2)
Next:
« FSA determinization, minimization
« Reading suggestion: Hoperoft and Ullman (1979, Ch. 263) (and is successive
editions),Jurafsky and Martin (2009, Ch. 2)

Acknowledgments, credits, references

1B Hopeof,Jon 5. and ey D. Ullman (197).nrdcin b Aomat Ty
Languages, and Computaton. Ad cison-Wesley Series in Computer Science and
Information Processing, Adcison-Wesley sex: 780201

B Juraichy, Dol and e H. Marin (309, pech ard Lrguge Procesing: An
Inrduction o Nl Langunge Prcsing,ConputtonlLingisicsnd pech
Recogaition. second edition. Pearson Pre

	Finite state automata
	Introduction
	Why study finite-state automata?
	Finite-state automata (FSA)
	FSA as a graph

	Languages and automata
	Languages and automata
	How to describe a language?
	Phrase structure grammars
	Chomsky hierarchy and automata
	Regular grammars: definition
	Regular languages: some properties/operations
	Three ways to define a regular language

	Deterministic finite automata
	DFA: formal definition
	DFA: formal definition
	Another note on DFA
	DFA: the transition table
	DFA: the transition table
	DFA recognition
	DFA recognition
	DFA recognition
	DFA recognition
	DFA recognition
	DFA recognition
	A few questions

	Non-deterministic finite automata
	Non-deterministic finite automata
	An example NFA
	Dealing with non-determinism
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition as search
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	An exercise
	One more complication: transitions
	-transitions need attention
	 removal
	 removal
	NFA–DFA equivalence
	Why do we use an NFA then?

	
	Summary

	Appendix
	Acknowledgments, credits, references

