

NFA determination

Data Structures and Algorithms for Computational Linguistics III
(ISCL-BA-07)

Cagin Coltekin
ccoltekin@cs.uni-tuebingen.de

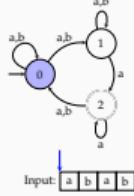
University of Tuebingen
Sensur für Sprachwissenschaft

Winter Semester 2025/26

version: 09/04/2025 09:12

Introduction NFA determination

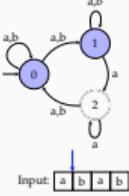
Recap


- Finite state automata come in two flavors
 - Deterministic (DFA): linear recognition time
 - Deterministic (NFA): sometimes more intuitive, easy to define, but exponential time (worst case) recognition
- The DFA and NFA are equivalent: for any language recognized by an NFA there is also a DFA recognizing the same language
- Then, the question is: how can we *determinize* an NFA to obtain an equivalent DFA

© Coltekin, M. / University of Tuebingen

Winter Semester 2025/26 1 / 9

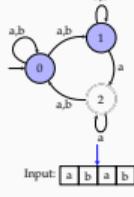
Introduction NFA determination


NFA recognition (again)

- Start at q_0
- Take the next input, mark all possible next states, repeat
- If an accepting state is marked at the end of the input, accept

Introduction NFA determination

NFA recognition (again)


- Start at q_0
- Take the next input, mark all possible next states, repeat
- If an accepting state is marked at the end of the input, accept

© Coltekin, M. / University of Tuebingen

Winter Semester 2025/26 1 / 9

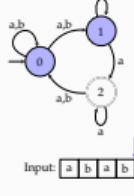
Introduction NFA determination

NFA recognition (again)

- Start at q_0
- Take the next input, mark all possible next states, repeat
- If an accepting state is marked at the end of the input, accept

Introduction NFA determination

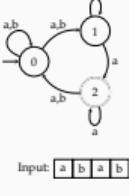
NFA recognition (again)


- Start at q_0
- Take the next input, mark all possible next states, repeat
- If an accepting state is marked at the end of the input, accept

© Coltekin, M. / University of Tuebingen

Winter Semester 2025/26 1 / 9

Introduction NFA determination


NFA recognition (again)

- Start at q_0
- Take the next input, mark all possible next states, repeat
- If an accepting state is marked at the end of the input, accept

Introduction NFA determination

NFA recognition (again)

- Start at q_0
- Take the next input, mark all possible next states, repeat
- If an accepting state is marked at the end of the input, accept

The process is *deterministic*, and *finite-state*.

© Coltekin, M. / University of Tuebingen

Winter Semester 2025/26 1 / 9

Introduction NFA determination

Determinization

the subset construction

Intuition: remember the parallel NFA recognition. We can consider an NFA being a *deterministic machine* which is at a *set of states* at any given time.

- Subset construction* (sometimes called power set construction) uses this intuition to convert an NFA to a DFA
- The algorithm can be modified to handle *c*-transitions (or we can eliminate *c*'s as a preprocessing step)

© Coltekin, M. / University of Tuebingen

Winter Semester 2025/26 1 / 9

Introduction NFA determination

The subset construction

by example: the resulting DFA

transition table without useless/inaccessible states		
symbol	a	b
$\rightarrow (0)$	$[0, 1]$	$[0, 1]$
$* (0, 1)$	$[0, 1, 2]$	$[0, 1]$
$* (0, 1, 2)$	$[0, 1, 2]$	$[0, 1]$

Do you remember the set of states marked during parallel NFA recognition?

© Coltekin, M. / University of Tuebingen

2 / 9

Introduction NFA determination

The subset construction

by example: side by side

NFA	DFA

- What language do they recognize?

© Coltekin, M. / University of Tuebingen

Winter Semester 2025/26 1 / 9

© Coltekin, M. / University of Tuebingen

Winter Semester 2025/26 1 / 9

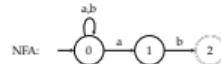
The subset construction

wrapping up

- In worst case, resulting DFA has 2^n nodes
- Worst case is rather rare in practice, number of nodes in an NFA and the converted DFA are often similar
- In practice, we do not need to enumerate all 2^n subsets
- We've already seen a typical problematic case:

- We can also skip the unreachable states during subset construction

Summary


- PFA are efficient tools with many applications
- PFA have two flavors: DFA, NFA (or maybe three: ε-NFA)
- DFA recognition is linear, recognition with NFA may require exponential time
- Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3), Jurafsky and Martin (2009, Ch. 2)

Next:

- Minimization

Yet another exercise

Determinize the following automaton

Acknowledgments, credits, references

- Hopcroft, John E. and Jeffrey D. Ullman (1979). *Introduction to Automata Theory, Languages, and Computation*. Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley. issn: 9780201029888.
- Jurafsky, Daniel and James H. Martin (2009). *Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition*. second edition. Pearson Prentice Hall. issn: 978-0-13-504196-3.