Dependency parsing
Data Structures and Algorithms for Computational Linguistis 1l
(1sCL8A7)

Gagn Caltekin
ceoltekindats. uni-tuebingen. de

Universty of Tubingen
S e Sprachwisnmachtt

Winter Semester 2025/26.

Dependency grammars

popularity in linguistics (p: ly

« Dep y

rather recently
« They are old: roots can be traced back to Panini (approx. 5th century BCE)
+ Modern dependency grammars are often attributed to Tesnicre (1959)

L)

« Th idea s capt words, rather
them into (abstract) consfituents.

ey

John saw Mary

Dependency grammars

Dependency grammars: alternative notation(s)

= root oot
J s e saw VERB
S ot) e
« No constituents, units of syntactic structure are words e G
. by 1 duck PRON NOUN
between syntacti units >
. Eachrelation defines cne ofthewords s the hea and the cthr s e
« Typically,the links (relations) have labels (dependency types) her bt
~ Oftn an antifctal oot node s s for computatonal converience
1 saw her duck
Dependency grammars: common assumptions Dependency grammars: projectivity
 Every word has singl head
+ Tha deperdency graphs reacyclic
o John saw Mary yesteday walking in the park
Wit theseassumptions, he representaton s e 5 o -
R . obermise o roete
parsng . Norprojectvity stems from a
~ rojotvedep - et
" Ingeneral dependenciesa)

Dependency grammars
Advantages and dssdvantges

Close relation to semantics.

+ Easier for lexible/free word order
Lots,lots of (multi-lingual) computational work, resources.

+ Often much useful in downstream tasks
More efficient parsing algorithms

~ No distinction between modification of head or the whole ‘constituent’
s toannotat dinati

Universal Dependencies project
(s practica detour)

+ Like constituency annotation efforts, most earlier dependency annotations
were language- or even project-specific
« This has been a major hurdle for multi-lingual and cross-lingual work
+ The Universal Dependencies (UD) project aims to unify dependency
annotation efforts as much as possible
th

o ! for many.
languages
= Currently (UD version 2.17) 339 trecbanks covering 186 languages

CONLL-X/U format for dependency annotation

e i VS8 NemiaplVearoseri 0 ro

1
2 o N 3 advood
F por ™ 4 mark
4 learn lesrm VERB VB FerbFora-int 1 acoup
5 che the DET D 6o
6 facts face Nom 2ony

Dependency parsing

+ Dependency parsing has many similarities with context-free parsing (e.3,
trecs)

+ Italso has some differences (g, number of edges and depth of trees are
limited)
+ Dependency parsing can be

= grammar-driven (hand crafted rules or constraints)

- data-driven (rules/model s learned from a treebank)

Rad on to leam the facts

Grammar-driven dependency parsing

+ Grammar-driven dependency parsers typically based on
- lexicazed CF parsing
= constraint satisfaction problem

hen
metimes soff,or welghtad,consains are used
- Practical implementations exist
+ Our focus will be on data-driven methods

Data-driven dependency parsing
commcr s dte-eiren pases

+ Almost any modern/practical dependency parser i statistcal
« The 'gran\mar' and the (soft) constraints are learned from a trechank
« There are two main approaches
Graph bascd. Seach or the bt e structur,for example
~ find minimum spanning tre (MST)
= adaptatons of CF chart parser (e, CKY)
(in general, computationally more expensive)
Transition-based similar to shift-reduce (LR(k)) parsing

redce) at ach step
- Lincar time complexity
- We

Shift-Reduce parsing
s efsher theough an xampe

S PIS+PIS—P
P Num [P x Num P/ Num

e

!
i
i

Transition-based parsing

iflereneces from shitreduce parsing

arsers for formal

. (LK) p
are determined by table lookup
Natura

1 s,a dependency p
cannot be made deterministic
+ Operations are (somewhat) different: instead of reduce (using

e (P —» Num)
i

e (7 - labeled arc
b o . (e todenl prch
s

Transition based parsing

« Use a stack and a bufier of unprocessed words

A typical transition system

W R e)
ok Tufter o

- Parsing as predicting a sequence of ransitions like

Lerr-Arc: mark current word as the head of the word on top of the stack
25 a dependent of the word on top of the stack + popwi,

Starr: push the current word on to the stack

« Algorithm terminates when all words in the input are processed

Ricirr-Axe: mark current word

LerrArc: (0| wiwy [B.A) = (o wj | B,AU{Ow.Twil})

« add are (w7, to A (keep w; in the buffer)

Ricrr-Asc: (0] wiwy [BA) = (0wl BAU T Wil

using a machine learning methos

deterministic, best dicted
d

+ popwi,

+ add are (we,r,) 10 A,

+ move ws o the bufer
il B.A) = (01w,

+ pushw; tothe stack

< remove it from the buffer

Surr (o B.A)

Transition based parsing: example

ion based parsing: example

St Leer-Arc(xsus)

Transition based parsing: example

Sturt Ricur-Asc(on)

Note: We need St for NP attachment.

Transition based parsing: example

‘Transition based parsing: example

Sturt Swrr

Transition based parsing: example

‘Transition based parsing: example

Lerr-Arc(case) Ricr-Ac(os)

We [e win

Transition based parsing: example

Ricr-Asc(soor)

with binoculars

Transition based parsing: example

Sturr

with binoculars

Transition based parsing: example Making transition decisions
.U (for formal table
= o determinize the parser actions
33 totraina
= + Almost any machine learning (classification) method s applicable
+ The features used for prediction i extracted from the states of the parser:
~ Top-k words on the sack
 Nextm words n the buffer
 Transition decisions made sofar (the arcs)
+ Given these objects, one can extract and use arbitrary features:
~ Words as categorical variables
~ rOSugs
Z Embeddings
The training data Non-projective parsing
o parsing parser configuratons «The P so far works proj
« The data data dependencies
* Thegener e o consiut a tanston seqenceb perorming mock * One way oachove (Hmited) no-projcive parsing is 0 add spcil
parsing using treebank annotations as an oper ot s ke i the stk and the uer
Swar operation thatswaps okens i the stck and the b
+ There may be multiple sequences that e he e dependency e s Lorw Akc and RicirARe franitons offrom nan-op words fromthe stack
procedure defines a canonicaltransition sequence o e e
+ For example, preprocessing o profecivize’ th trees before training
Lere-Arc, 1f (0], 7,010]) € A 3
RicureAxc, if (ol0, . O] € A s
and all dependents of 0] are attachect ~ post processing forresoring the projctvity after parsing
o i Re-troduce projectvty o the mared dependences
Pseudo-projective parsing Transition based parsing: summary /notes
« Linear time, greedy, projective parsing
+ Can be extended to non-projective dependencies
+ We need some extra work for generating gold-standard transition sequences
Nore e A MG 8 scheduled on the ssue today Foms
—
+ Earl errors propagate,
long:distance dependencies
+ The greedy algorithm can be extended to beam search for bette accuracy
(stil linear time complexity)
Puendojctocree - PNE i scheduled on - the s today
MST algorithm for dependency parsing MST example
« For directed graphs, there is a polynomial time algorithm that finds the
tree (MST) of
(Chu-Liu-Edmonds algorithm)
with a dense/fully
+ Removes edges until the esulting graphis a tree
Foreach node selec the incoming are it highest weght
MST example MST example
Reor
1 '9/—\&\
Y
her duck her dudk
S—jo—"
Detct the cyles, contrctthen to sngle node’ Pk the best ar it the combined node,brak th cycle

MST example Properties of the MST parser

5 « The MST parser i non-projective
1 s « There is an algorithm with O(n2) time complexity
. with but stillcose to

quadratic)
+ The weights/parameters are associated with edges (often called

‘arc-factored)

X « We can learn the arc weights directly from a treebank
her duck + However, it i difcult to incorporate non-local features

Once all cyeles are liminated, the result i the MST

External features Evaluation metrics for dependency parsers

« Like CF parsing, exact match is often too strict

« For both type of parsers, one can obtain features that are based on . 1s whos are d
unsupervised methods such as - A5) pe toma
dustering = ¥ typ
et rom bilngus corpos ek . used for d
se vecto representtions (embedaings) particular dependency type
e g mos precision e
vecal =
fmessure il (SR

Evaluation example Depehdehcv parsing: summary
Dependencyrbtionsareoffen semantcaly xsir o e
Gl st Pzt ~; ety parsing
ree-word-order an
+ Dependency relatons are between words, no phrases o oherabstrac nodes
H /-\ = arepostlated "
her duk 1 saw her duck Two general methods:
it b ey e ool ftures, st s e
uas 100 graph based h
0%)
Precisionsu; 50% + Combination o different methods oftn result in bette performance
Recallysuny 100% + Non-projective panmg is more difficult
Precsiongy 0% (assumec) * Most research has focused on leaning,
Recalloyy o methods (maly ueing neurel networks)

+ Reading suggestion: Jurafsky and Martin (2009, draft chapter 14) Kiibler,
McDonald, and Nivre (2009)

Acknowledgments, references, additional reading material
B coneemscomart s o A
Bl oo “ v Ay S ——

http://dickgrune.com/Books/PTAPG_1st_Edition/BookBody.pdf

	Dependency parsing
	Dependency grammars
	Dependency grammars
	Dependency grammars
	Dependency grammars: alternative notation(s)
	Dependency grammars: common assumptions
	Dependency grammars: projectivity
	Dependency grammars
	Universal Dependencies project
	CONLL-X/U format for dependency annotation

	Dependency parsing
	Dependency parsing
	Grammar-driven dependency parsing
	Data-driven dependency parsing

	Transition-based parsing
	Shift-Reduce parsing
	Transition-based parsing
	Transition based parsing
	A typical transition system
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Making transition decisions
	The training data
	Non-projective parsing
	Pseudo-projective parsing
	Transition based parsing: summary/notes

	MST for dependency parsing
	MST algorithm for dependency parsing
	MST example
	MST example
	MST example
	MST example
	Properties of the MST parser

	Evaluation/alternatives/improvements
	External features
	Evaluation metrics for dependency parsers
	Evaluation example

	
	Dependency parsing: summary

	Appendix
	Acknowledgments, references, additional reading material

