DSA3 Lab session 7/



Administrivia first

* Kyle is once again (mentally) hanging by a thread
today, gomenasai

* If there’s anything you wanted covered that we don’t
go over today, tell me and we’ll look at it next week

* Should we just make labs movie time?



What is hashing good for?

* Fast indexing and data lookup

* Password security
 Store a hash instead of the actual password

* Data integrity
* Sending a hash (checksum) along with data
* Recipient checks received data hash to check for corruption

* Many other uses...



We can, in principle, hash anything
e Step 1: Take anything, turn it into a really really big integer.

* Step 2: Use some hash function to map the integer down to hash
table size m

* m is often a prime number to distribute keys evenly, exactly why is
beyond the scope of this course

 Trust me bro



A hands-on example

e List: [27, 18, 29, 28, 39, 13, 16, 42]
* Hash function: h(k) =k % 11

* First question: how big is the hash table?



A hands-on example

e List: [27, 18, 29, 28, 39, 13, 16, 38]
* Hash function: h(k) =k % 11

* Second question: What does the hash table look like
with chaining?



A hands-on example

e List: [27, 18, 29, 28, 39, 13, 16, 38]

* Hash function: h(k) =k % 11

0 1 2 3 4 5 6 7
13 27 28 18
16 39 29

38

10



A hands-on example

e List: [27, 18, 29, 28, 39, 13, 16, 38]
* Hash function: h(k) =k % 11

* Third question: What does it look like with linear
probing?



A hands-on example

e List: [27, 18, 29, 28, 39, 13, 16, 38]

* Hash function: h(k) =k % 11

38 13 27 28

18

29

39

10

16



Hashing is totally awesome right?

* A basic array is O(1) insertion and O(n) lookup
* We can improve that with sorting

* Hashes are O(1)

e Can we think of any disadvantages that might lead us away from
hashing in specific technical environments?



Let’s break this down in detail, it will help for

your lab
def cyclic_shift(s):

mask = Oxffff

h =20

for ch in s:
h = (h << 5 & mask) | (h >> 11)
h ~= ord(ch)

return h




def cyclic_shift(s):
mask = Oxffff
h =0
for ch in s:
h = (h << 5 & mask) | (h >> 11)
h "= ord(ch)
return h

Oxffff is a hexadecimal
do you remember the binary conversion from TT?



def cyclic_shift(s):
mask = Oxffff
h =0
for ch in s:
h = (h << 5 & mask) | (h >> 11)
h "= ord(ch)
return h

Oxffff is a hexadecimal
do you remember the binary conversion from TT?
What does it mean in terms of hashing?



def cyclic_shift(s):
mask = Oxffff
h =0
for ch in s:
h = (h << 5 & mask) | (h >> 11)
h "= ord(ch)
return h

<< and >> are bit shift operators, suppose x is 101101
X << 51i5s10110100000
X>>5is1



def cyclic_shift(s):
mask = Oxffff
h =0
for ch in s:
h = (h << 5 & mask) | (h >> 11)
h "= ord(ch)
return h

<< and >> are bit shift operators, suppose x is 101101
X << 51i5s10110100000
X>>5is1



def cyclic_shift(s):
mask = Oxffff
h =0
for ch in s:
h = (h << 5 & mask) | (h >> 11)
h "= ord(ch)
return h

Suppose x is 101101 and mask is Oxf
X << 21510110100
X << 2 & mask is 0100



def cyclic_shift(s):
mask = Oxffff
h =0
for ch in s:

h = (h << 5 & mask) | (h >> 11)
— h = ord(ch)

return h
h << 5and h >> 11 are not arbitrary numbers

The practical effect is cyclic shift
In the first loop, at the red arrow, what is the value of h?



def cyclic_shift(s):
mask = Oxffff
h =0
for ch in s:
h = (h << 5 & mask) | (h >> 11)
h "= ord(ch)
return h

ord(ch) returns the Unicode code-point of ch
N=1s XOR
What is the value of h after this line?



def cyclic_shift(s):
mask = Oxffff
h =0
for ch in s:
h = (h << 5 & mask) | (h >> 11)
h "= ord(ch)
return h

2"d cycle, we just cyclic shift h and *= the next ch
and again
and again



String matching

* The best way to understand the algorithms:
* just sit down and process the slides step-by-step

* We won’t cover FSA much today; we’ll deal with it in
detail later



Brute force

* Easy to implement

 Actually viable for short search patterns

* No preprocessing overhead means it can beat more elaborate algorithms in
certain situations

 Suffers tremendously from adversarial conditions (consider the
AAAAAAAAAAAAAAAAAAC situation)

* Potentially lots of repeated work



Boyer-Moore

* O(n), O(nm) worst case

* In practice, mismatches often happen early when comparing right-to-
left

* Can skip large portions of text

* Preprocessing required

 Suffers when the alphabet is tiny or the pattern has many repeating
characters (the right-left mismatch advantage disappears)



FSA

* O(n) matching performance
* Great for matching the same pattern repeatedly
* Great for multi-pattern searching

* High precomputation overhead to build the transition table before
actually matching



KMP

* O(h + m)
* Prefix table tracks partial matches
e Guaranteed linear worst case

* Can be slower in typical use cases than Boyer-Moore



Rabin-Karp

* O(n) typical
* Easier to implement

* Good for multi-pattern search (just compare against multiple hash
codes)

 O(nm) worst case if lots of hash collisions



	Slide 1: DSA3 Lab session 7
	Slide 2: Administrivia first 
	Slide 3: What is hashing good for?
	Slide 4: We can, in principle, hash anything
	Slide 5: A hands-on example
	Slide 6: A hands-on example
	Slide 7: A hands-on example
	Slide 8: A hands-on example
	Slide 9: A hands-on example
	Slide 10: Hashing is totally awesome right?
	Slide 11: Let’s break this down in detail, it will help for your lab
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: String matching
	Slide 21: Brute force
	Slide 22: Boyer-Moore
	Slide 23: FSA
	Slide 24: KMP
	Slide 25: Rabin-Karp

